Course guide

280827 - 280827 - Instrumentation and Modelling in Oceanographic Engineering

Unit in charge: Barcelona School of Nautical Studies
Teaching unit: 751 - DECA - Department of Civil and Environmental Engineering.
Degree: MASTER'S DEGREE IN NAVAL AND OCEAN ENGINEERING (Syllabus 2017). (Optional subject).
Academic year: 2022 ECTS Credits: 5.0 Languages: Catalan, Spanish, English

LECTURER
Coordinating lecturer: MANUEL ESPINO INFANTES
Others: Altomare, Corrado
Liste Muñoz, Maria
Espino Infantes, Manuel

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Transversal:
CT3. TEAMWORK: Ability to work as a member of an interdisciplinary team, either as a member or performing management tasks, with the aim of contributing to projects pragmatically and sense of responsibility, assuming commitments considering the resources available.
CT4. EFFECTIVE USE OF INFORMATION RESOURCES: Manage the acquisition, structuring, analysis and visualization of data and information in the field of specialty, and critically evaluate the results of this management.
CT5. THIRD LANGUAGE Learning a third language, preferably English, with adequate oral and written and in line with the future needs of the graduates.

Basic:
CB6. Possess knowledge and understanding that provide a basis or opportunity be original in the development and / or application of ideas, often in a research context.
CB7. That the students can apply their knowledge and ability to solve problems in new or unfamiliar environments within broader (or multidisciplinary) contexts related to their study area.
CB8. Students should be able to integrate knowledge and handle the complexity of making judgments based on information that, being incomplete or limited, includes reflections on the responsibilities social and ethical linked to the application of their knowledge and judgments.
CB9. That students can communicate their conclusions and the knowledge and Latest rationale underpinning to specialists and non Specialty clearly and unambiguously.
CB10. Students must possess the learning skills that enable them continue studying in a way that will be largely self-directed or autonomous.

TEACHING METHODOLOGY

The subject is face-to-face in which a practice or a case study will be carried out weekly. In each session, the case study will be worked on based on a practice sheet in the computer room. The subject include prgramming in open source code and professional software.

LEARNING OBJECTIVES OF THE SUBJECT

The subject focuses on the acquisition of knowledge about instrumentation and modelling in the field of oceanographic engineering. The student will acquire knowledge about development of numerical models to reproduce and simulate processes in the ocean.
STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>90,0</td>
<td>72.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>10,0</td>
<td>8.00</td>
</tr>
<tr>
<td>Hours medium group</td>
<td>25,0</td>
<td>20.00</td>
</tr>
</tbody>
</table>

Total learning time: 125 h

CONTENTS

Prac. 1. Storm Surge simulation and modelling

Description:

Full-or-part-time: 16h
- Practical classes: 6h
- Self study: 10h

Prac. 2. Spiral Ekman modelling

Description:

Full-or-part-time: 9h
- Practical classes: 3h
- Self study: 6h

Prac. 3. Modelling in Oceanographic Engineering: Long wave.

Description:

Full-or-part-time: 17h
- Practical classes: 6h
- Self study: 11h

Prac. 4. Process simulation in ocean engineering: transport equation in 2D.

Description:
Transport equation: Advection, diffusion and source term. Simplification for 1D and 2D cases. Peclet number. Initial conditions, boundary conditions and numerical stability. Lagrangean versus Eulerian perspectives. Case 4: Transport equation in 2D.

Full-or-part-time: 17h
- Practical classes: 6h
- Self study: 11h
Prac 5. Modeling in Oceanographic Engineering: The SWAN Wave Propagation Model

Description:
Waves generation and propagation. Diffraction, refraction and shoaling. Elliptical models, energetic models, mean field models and Boussinesq models. Case 5: The SWAN wave propagation model.

Full-or-part-time: 17h
Practical classes: 6h
Self study : 11h

Prac 6. Modeling in Oceanographic Engineering: the GNOME Pollutant Dispersion Model

Description:

Full-or-part-time: 16h
Practical classes: 6h
Self study : 10h

Prac 7. Instrumentation: physical equipment + remote sensing (satellites, cameras, drones, etc.) and COPERNICUS products.

Description:
Instrumentation in oceanographic engineering: pressures, currents and hydrography. Satellital measurements: wind, currents, waves, etc. Cameras and drones used to identify plastics. COPERNICUS portal and sentinel program at the ESA.

Full-or-part-time: 9h
Theory classes: 3h
Self study : 6h

Prac 8. Instrumentation: physical equipment, operation, visit to the laboratory

Description:

Full-or-part-time: 8h
Theory classes: 3h
Self study : 5h

Prac 9. Practical current measurement: launch of Lagrangian buoys and processing of results

Description:
Design of the measurement system of a lagrangean buoy. Ensambling and reception tests. Currents data storage and post-process. Current measurement practice: Lagrangean buoys launching and processing of the acquired data.

Full-or-part-time: 16h
Practical classes: 6h
Self study : 10h
GRADING SYSTEM

Students will be graded based on the marks obtained in the deliverables associated to the different practices made during the course.

BIBLIOGRAPHY

Basic: