Course guide
295105 - 295II021 - Control Systems

Unit in charge: Barcelona East School of Engineering
Teaching unit: 707 - ESAII - Department of Automatic Control.
Degree: MASTER'S DEGREE IN INTERDISCIPLINARY AND INNOVATIVE ENGINEERING (Syllabus 2019). (Compulsory subject).
Academic year: 2023 ECTS Credits: 6.0 Languages: English

LECTURER
Coordinating lecturer: Pere Ponsa
Others: Javier Gámiz, Estefanía Martínez, Abel Torres, Ramon Vilanova

PRIOR SKILLS
This is an intermediate level subject in control systems. For a good understanding, a previous background is required: PID control, MATLAB-SIMULINK software, matrix algebra, ordinary differential equations and process instrumentation.

REQUIREMENTS
It is recommended to have passed the subjects "Data acquisition Instrumentation" and "Systems Modeling".

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
CEMUEII-09. Design, implement and manage automated systems for the control and supervision of processes in engineering.

Generical:
CGMUEII-01. Participate in technological innovation projects in multidisciplinary problems, applying mathematical, analytical, scientific, instrumental, technological and management knowledge.

Transversal:
05 TEQ. TEAMWORK. Being able to work as a team player, either as a member or as a leader. Contributing to projects pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.
06 URL. EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.
03 TLG. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

TEACHING METHODOLOGY
The methodologies used are:
- Master class
- Seminars
- Case study
- Project based learning
LEARNING OBJECTIVES OF THE SUBJECT

The purpose of this course is to integrate knowledge and skills in the design, development and performance of processes control in industrial domain. The course establishes the relationship between facilities and equipment, people and management systems. The main part of this subject is understand the automatic control using PID law and development of supervisory control scenarios using SCADA Applications. The course applies study cases in industrial context through examples of processes control and environmental management of wastewater plants.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>96,0</td>
<td>64.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>34,0</td>
<td>22.67</td>
</tr>
<tr>
<td>Hours small group</td>
<td>20,0</td>
<td>13.33</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

1. Introduction

Description:
1.1 Terminology. Definitions. PI&D Diagrams.
1.2 Modern control and intelligent control.
1.3 Skills in control systems.

Specific objectives:
Know how understand control systems and use of software resources.

Related activities:
Master Class. Use of software resources.
VIDEO: MATLAB. How to get started with Control Systems in MATLAB. At URL: https://youtu.be/MylJIqVVNr0, last visited 11 th December 2020.

Full-or-part-time: 2h
Theory classes: 1h
Self study : 1h

2. PID Control

Description:
2.1 Introduction.
2.2 PID controllers.
2.3 Process models: static, dynamics.
2.4 PID design. Tuning of PID controllers.

Specific objectives:
Learn how link the dynamic model of a system with the control law. Learn how configure the PID control law for various applications.

Related activities:
Master class. Case study. Examples, Laboratory practices

Full-or-part-time: 20h
Theory classes: 9h
Self study : 11h
3. Industrial control technology

Description:
3.1 Sequence control. PLC controller.
3.2 Supervisory control. SCADA systems.
3.3 Dynamic control of Robot manipulators.
3.4 Control room.

Specific objectives:
Provide an integrated vision of human-supervisory systems from the point of view of human, technology and systems engineering.

Related activities:

Full-or-part-time: 3h
Theory classes: 1h
Self study: 2h

4. Industrial control

Description:
4.1 Introduction
4.2 Internal model control.
4.3 Cascade control.
4.4 Feedforward control.
4.5 Time delay compensation.
4.6 Multivariable control.

Specific objectives:
Learn an integrated vision of industrial control.

Related activities:
Master class. Exam. Case study, MATLAB examples.

Full-or-part-time: 18h
Theory classes: 10h
Self study: 8h

5. Water management

Description:
5.1 Case study: Wastewater treatment Plant (EDAR Besós)

Specific objectives:
General description of the water cycle concept, with special attention to the urban water cycle and its management. All the stages that make up this cycle will be explained and the different characteristics, both of the water and the infrastructures involved from a holistic vision and without forgetting the interrelations between each of stages and their involvement in sustainable resource management within their own cycle.

Related activities:
Seminars.

Full-or-part-time: 3h
Theory classes: 1h
Self study: 2h
6. Laboratory practices.

Description:
PART P1 Practices
6.1 PID control with MATLAB-SIMULINK. Obtaining a plant model experimentally
6.2 Implementation of an industrial PID controller for a temperature control process.
6.3 Model of level and flow control systems.
6.4 Frequency response of level and flow control systems.
6.5 PID design of level and flow control systems in academic plant.

PART P2 Practices
6.6 Using MATLAB for system identification.
6.7 SIMULINK for system identification
6.8 PI controller self tuning for an aeration control system.
6.9 Detection of inefficiencies with PID fixed gain
6.10 A PID-Fuzzy control approach.

Specific objectives:
The practical part of the subject contributes to the integration between various software, the acquisition of technical ability in PID control and industrial process control with advanced algorithms.

Related activities:
In the Laboratory A5.6 Automatic Control is available:
- academic plants for level and flow process control
- MATLAB V. R2018b

In the Laboratory A5.4 Automation and Industrial Robotics, is available:
- Assembly academic system FAS200
- MATLAB/SIMULINK v. R2018b
- Wonderware SCADA InTouch 2014
- Rockell automation, PLC controllers

At the end of each part of practices, the student's group delivers a report

Full-or-part-time: 104h
Laboratory classes: 28h
Self study: 76h

GRADING SYSTEM
The qualification system includes activities (written exam) and laboratory practices:
Exam1*(0,3)+Exam2*(0,3)+Practices_1*(0,20)+Practices_2*(0,20)
Exam1: Modules 1,2
Exam2: Modules 3, 4, 5
Practices_1: Practices 1,2,3,4,5
Practices_2: Practices 6,7,8,9,10

EXAMINATION RULES.
The Exams are test, exercises.
Virtual practics or/and Laboratory practics are mandatory. Laboratory practics and are carried out in grops of 3/4 people in Laboratory A5.6 (PART I) , in Laboratory A5.4 (Part II) or in a Computer Room.

The evaluation method of this course meets the current academic regulations to be qualified: NO REVALUABLE.
BIBLIOGRAPHY

Basic:

Complementary:

RESOURCES

Other resources:
It has the collaboration of professionals of Wonderware, Rockwell and SMC that can provide a more industrial vision of the subject.

Magazine Control Engineering: https://www.controleng.com/magazine

Introduction to Robotics: https://pedro-ponsa.staff.upc.edu/ (/>
International Water Association IWA: https://www.iwapublishing.com/ (/>
MATLAB Control Systems Toolbox: https://es.mathworks.com/help/control/index