295106 - 295II022 - Computer Vision

- **Coordinating unit:** 295 - EEBE - Barcelona East School of Engineering
- **Teaching unit:**
 - 749 - MAT - Department of Mathematics
 - 707 - ESAII - Department of Automatic Control
 - 717 - EGE - Department of Engineering Presentation
- **Academic year:** 2019
- **Degree:** MASTER'S DEGREE IN INTERDISCIPLINARY AND INNOVATIVE ENGINEERING (Syllabus 2019).
 (Teaching unit Compulsory)
- **ECTS credits:** 6

Teaching staff

- **Coordinator:** José Rodellar
- **Others:** Raul Benitez, Jordi Torner, Francesc Alpiste, Santiago Alférez, Antoni Grau

Prior skills

Programming. Basic statistics.

Degree competences to which the subject contributes

Specific:

CEMUEII-10. Design and implement image analysis systems for the advanced characterization of complex systems in engineering.

General:

CGMUEII-01. Participate in technological innovation projects in multidisciplinary problems, applying mathematical, analytical, scientific, instrumental, technological and management knowledge.

Transversal:

- **05 TEQ. TEAMWORK.** Being able to work as a team player, either as a member or as a leader. Contributing to projects pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.
- **06 URI. EFFECTIVE USE OF INFORMATION RESOURCES.** Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.
- **03 TLG. THIRD LANGUAGE.** Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

Learning objectives of the subject

- Recognize different image modalities and their applications.
- Perform advanced manipulations of digital images stored in different file formats.
- Perform automatic segmentation and extraction of descriptors.
- Develop and implement algorithms for the automatic recognition of special patterns in images based on machine and deep learning methods.
- Getting an overview to VR development with Unity and introducing VR elements and user input.
- Introducing to different VR technologies and building an application.
- Publishing apps in Unity and exporting to mobile devices.
• Design and implement appropriate pipelines for specific real problems, including input datasets, decision on the most appropriate techniques and interpretation of the results.
• Generate high level reports including developments, evaluations and conclusions.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group:</th>
<th>34h</th>
<th>22.67%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours medium group:</td>
<td>0h</td>
<td></td>
<td>0.00%</td>
</tr>
<tr>
<td>Hours small group:</td>
<td>20h</td>
<td></td>
<td>13.33%</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>0h</td>
<td></td>
<td>0.00%</td>
</tr>
<tr>
<td>Self study:</td>
<td>96h</td>
<td></td>
<td>64.00%</td>
</tr>
</tbody>
</table>
Computer Vision

Content

| **Image processing** | **Learning time:** 12h
Theory classes: 8h
Laboratory classes: 4h |
|----------------------|--------------------------|

Description:
- Image preprocessing: intensity transformations, spatial and statistical filters, filtering in the frequency domain
- Image segmentation: Otsu, watershed, morphological operations
- Feature extraction: geometrical descriptors, color spaces, texture analysis

Related activities:
- Laboratory session 1: Image preprocessing
- Laboratory session 2: Segmentation and features

Specific objectives:
Understand the essential steps from an original image to its final representation by means of quantitative descriptors.

| **Pattern recognition in images** | **Learning time:** 16h
Theory classes: 10h
Laboratory classes: 6h |
|------------------------------|--------------------------|

Description:
- Machine learning based on features: Linear discriminant analysis, Bayes classifier, principal component analysis, decision trees and support vector machines.
- Specialized architectures and codes for structured implementations.

Related activities:
- Laboratory session 3: Machine learning
- Laboratory session 4: Convolutional neural networks 1
- Laboratory session 5: Convolutional neural networks 2

Specific objectives:
Understand the theoretical background, formulate problems in biomedical and other application areas, develop and implement computer codes and be able to decide which algorithms perform better for each problem.
Virtual reality

Description:
- Overview of virtual reality (VR) hardware and software to learn different ways to get started with this technology.
- Practical cases of current applications ongoing in the biomedical sector.

Related activities:
- Laboratory session 6:
- Laboratory session 7:
- Laboratory session 8:
- Laboratory session 9:

Specific objectives:
- Develop and publish VR apps using Unity 3D platform. Presenting biomedical applications practical cases: Rehabilitation, surgical planning, 3D reconstruction, cognitive training, and others.

Learning time: 12h
- Theory classes: 4h
- Laboratory classes: 8h

Applications

Description:
- Applications of the methodologies to practical problems in areas like:
 - Robotics
 - Medical images
 - Satellite images
 - Virtual reality

Related activities:
- Laboratory session 10: Application.

Specific objectives:
- Understand and solve specific problems using real data.

Learning time: 14h
- Theory classes: 12h
- Laboratory classes: 2h
Qualification system

Partial exam 30%
Final exam 30%
Projects 40%

The subject has a reevaluation test. The students will be able to access the re-assessment test that meets the requirements set by the EEBE in its Assessment and Permanence Regulations (https://eebe.upc.edu/ca/estudis/normatives-academiques/documents/eebe-normativa-avaluacio-i-permanencia-18-19-aprovat-je-2018-06-13.pdf)

Bibliography

Basic:

Others resources:
- Contents and software uploaded to Atenea