295113 - 295II133 - Sustainable Materials

Coordinating unit: 295 - EEBE - Barcelona East School of Engineering
Teaching unit: 702 - CEM - Department of Materials Science and Engineering
Academic year: 2019
Degree: MASTER'S DEGREE IN MATERIALS SCIENCE AND ADVANCED MATERIALS ENGINEERING (Syllabus 2019). (Teaching unit Optional)
MASTER'S DEGREE IN INTERDISCIPLINARY AND INNOVATIVE ENGINEERING (Syllabus 2019). (Teaching unit Optional)
ECTS credits: 6
Teaching languages: Catalan, Spanish, English

Teaching staff

Coordinator: Maria Lluïsa MasPOCH Ruldua
Others: Jonathan Cailloux
Orlando Santana

Opening hours

Timetable: The student must specify and fix the consultation with the professor via e-mail.

Prior skills

Scientific and technical education in materials science and engineering. Specifically, in the production, the transformation, the processing, the recycling and the storage of all type of materials which take into account sustainability concepts.

Requirements

No one is required

Degree competences to which the subject contributes

Specific:
CEMUEII-12. Design technical solutions that guarantee responsible and sustainable management of the materials used to reduce their environmental impact. (Specific competence of the Efficient Systems specialty)

Transversal:
05 TEQ. TEAMWORK. Being able to work as a team player, either as a member or as a leader. Contributing to projects pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.
06 URI. EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.
03 TLG. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.
Teaching methodology

PM1: Traditional lecture with master classes (practical resources will be available on the UPC intranet Atenea)
PM2: Active learning in small groups with real case projects. Industrial seminars and/or visits are equally considered.
PM3: Collaborative learning with teamwork and teamwork presentation
PM4: Tutoring
PM5: Skills evaluation

It should be noted that this course is mainly based on self-learning (project based learning methodology), with a close tutoring accorded by the professor.

PM: pedagogical method

Learning objectives of the subject

- Raise student’s awareness of reduce, reuse and recycle materials
- Develop student knowledge of circular economy
- Enhancement of analytical and presentational skills
- Improvement of team working abilities and interpersonal communications
- Improvement of decision making attitude and personal initiatives to resolve real-life scientific problems

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 22h</th>
<th>Hours medium group: 0h</th>
<th>Hours small group: 22h</th>
<th>Guided activities: 4h</th>
<th>Self study: 102h</th>
</tr>
</thead>
</table>

Total percentage: 100.00%
Content

<table>
<thead>
<tr>
<th>Topic</th>
<th>Learning time: 25h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material waste</td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td>Type of plastic wastes and the different alternatives for reusing them.</td>
</tr>
<tr>
<td>Specific objectives:</td>
<td>The seminar will provide general knowledge about waste reduction, circular economy and Ecodesign</td>
</tr>
<tr>
<td>Recycling materials</td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td>What challenges face manufacturers who recycle material waste. Explain the recycling hierarchy indicated by the terms primary, secondary, tertiary and quaternary recycling. What materials are most commonly recycled from post-consumer sources and why?</td>
</tr>
<tr>
<td>Specific objectives:</td>
<td>Introduction of new concepts regarding material recycling together with the real-life issues who face manufactures during recycling process (i.e. separation, degradation, etc.)</td>
</tr>
<tr>
<td>Life cycle Assessment</td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td>Introduction to the concept of life cycle assessment concept in order to assess the environmental impact associated with all the stages of a product's life from raw material extraction through materials processing, manufacture, distribution, use, repair and maintenance and recycling.</td>
</tr>
<tr>
<td>Related activities:</td>
<td>CES EduPack</td>
</tr>
</tbody>
</table>
Bio-based polymers

Description:
Bio-based polymers: a sustainable way to minimize plastic pollution?

Specific objectives:
Introduction to bio-based polymers with a complete description of the different types, their productions and their applications.

<table>
<thead>
<tr>
<th>Learning time: 25h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 3h</td>
</tr>
<tr>
<td>Laboratory classes: 0h</td>
</tr>
<tr>
<td>Self study: 22h</td>
</tr>
</tbody>
</table>

Circular economy seminar

Description:
A circular economy seminar will be launched and expert presentations will take place.

<table>
<thead>
<tr>
<th>Learning time: 5h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 1h 30m</td>
</tr>
<tr>
<td>Laboratory classes: 0h</td>
</tr>
<tr>
<td>Self study: 4h</td>
</tr>
</tbody>
</table>

1st project: Plastic waste collection, separation and recycling

Description:
This first project is based in the initial collection of plastic taps followed by their separation according to the plastic type. In a second step, plastic wastes will be grounded, extruded and/or injection-moulded in order to manufacture new plastic items. The 3D printing of a recycled plastic filament may be also largely considered.

Related activities:
Experimental work
Team working
Tutoring
Deliverable reports
Oral presentation and discussion of the obtained results.

<table>
<thead>
<tr>
<th>Learning time: 15h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 0h</td>
</tr>
<tr>
<td>Laboratory classes: 15h</td>
</tr>
<tr>
<td>Self study: 0h</td>
</tr>
</tbody>
</table>
2nd project: characterization of the previously manufactured plastic item

<table>
<thead>
<tr>
<th>Learning time: 15h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 0h</td>
</tr>
<tr>
<td>Laboratory classes: 15h</td>
</tr>
<tr>
<td>Self study: 0h</td>
</tr>
</tbody>
</table>

Description:
In this second project, each group will determine the physico-chemical, thermal, mechanical and morphological properties of its recycled plastic item.

Related activities:
Experimental work
Team working
Tutoring
Deliverable reports
Oral presentation and discussion of the obtained results.

Qualification system
40 % End-of-course evaluation* and 60 % continuous assessment**

* End-of-course evaluation referred to as a written test
**Continuous assessment included collaborative work and oral presentations (25%), delivery of project reports (25%) and attendance to laboratories and industrial seminars (10%)

Regulations for carrying out activities
It will be indicated for each activity

Bibliography

Basic:
