Course guide
295118 - 295II233 - Iot Sensors & Mems

Unit in charge: Barcelona East School of Engineering
Teaching unit:
710 - EEL - Department of Electronic Engineering.
723 - CS - Department of Computer Science.
702 - CEM - Department of Materials Science and Engineering.
712 - EM - Department of Mechanical Engineering.
Degree:
MASTER'S DEGREE IN INTERDISCIPLINARY AND INNOVATIVE ENGINEERING (Syllabus 2019). (Optional subject).
Academic year: 2022
ECTS Credits: 6.0
Languages: English

LECTURER
Coordinating lecturer: EDGARDO ADEMAR SAUCEDO SILVA
Others:
Madrenas Boadas, Jordi
Pérez Poch, Antoni
Travieso Rodríguez, Antonio
Jiménez Piqué, Emilio

PRIOR SKILLS
Electronic Systems, Computing, Mechanical Systems, Material Science and Technology

REQUIREMENTS
Data acquisition & Instrumentation

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES
Specific:
CEMUEI-15. Design and implement acquisition, actuation and control systems that integrate electronic, electrical and mechanical technology in the field of intelligent production systems. (Specific competence of the Advanced Manufacturing Systems specialty)

General:
CGMUEII-01. Participate in technological innovation projects in multidisciplinary problems, applying mathematical, analytical, scientific, instrumental, technological and management knowledge.
CGMUEII-05. To communicate hypotheses, procedures and results to specialized and non-specialized audiences in a clear and unambiguous way, both orally and through reports and diagrams, in the context of the development of technical solutions for problems of an interdisciplinary nature.

Transversal:
05 TEQ. TEAMWORK. Being able to work as a team player, either as a member or as a leader. Contributing to projects pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.
06 URL. EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.
03 TLG. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.
TEACHING METHODOLOGY

Lectures
Laboratory classes
Laboratory practical work
Individual and group work

LEARNING OBJECTIVES OF THE SUBJECT

The aim of this course is to train students in methods to design and use intelligent sensor systems and their connection to the Internet-of-Things, with special emphasis to Micro-Electromechanical Systems (MEMS)

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group</td>
<td>22,0</td>
<td>14.67</td>
</tr>
<tr>
<td>Self study</td>
<td>102,0</td>
<td>68.00</td>
</tr>
<tr>
<td>Hours small group</td>
<td>22,0</td>
<td>14.67</td>
</tr>
<tr>
<td>Guided activities</td>
<td>4,0</td>
<td>2.67</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

The signal acquisition chain

Description:
Introduction to intelligent sensor systems and its signal acquisition stages. Microelectronics and amplifiers.

Specific objectives:
Analyze, design and use analog front-end stages for sensor signal acquisition

Related activities:
Lectures and application exercises.
Laboratory exercises:
Sensor signal acquisition

Full-or-part-time: 30h
Theory classes: 4h
Laboratory classes: 4h
Guided activities: 2h
Self study: 20h
MEMS. The microfabrications process.

Description:
MEMS materials and the microfabrication process (Litography and other microfabrication techniques, Introduction to Process integration)

Specific objectives:
Understand and know the different MEMS microfabrication process and materials.

Related activities:
Lectures and application exercises.
Laboratory exercises:
Fabrication of a model MEMS by masking

Full-or-part-time: 28h
Theory classes: 4h
Laboratory classes: 4h
Self study: 20h

MEMS structures and modeling

Description:
Description of the most common MEMS structures and their mechanical analysis.

Specific objectives:
Analyse MEMS structures and determine its fundamental parameters.

Related activities:
Lectures and application exercises.
Laboratory exercises:
MEMS simulation and experimental measures.

Full-or-part-time: 28h
Theory classes: 4h
Laboratory classes: 4h
Self study: 20h

Digital signal processing and their implementation on microcontrollers

Description:
Description and use of the microcontroller system to acquire and process signals from sensors.

Specific objectives:
Use microcontroller systems for signal acquisition and wireless connection.

Related activities:
Lectures and application exercises.
Laboratory exercises:
Microcontroller system electronic circuit and its programming

Full-or-part-time: 32h
Theory classes: 4h
Laboratory classes: 6h
Guided activities: 2h
Self study: 20h
Networks

Description:
Data link layer for IoT: Wireless communication technologies, wire communication technologies, Manet Networks. RFID, Bluetooth.
Network layer for IoT: 6lowPAN, dynamic routing for wireless ad-hoc network.
Communication protocols for IoT: Service-oriented protocols (COAP, protocols based on the exchange of messages (MQTT), Service discovery protocols.
Data processing for IoT: Cloud computing, Fog computing.

Specific objectives:
Understand current communication network protocols for IoT.
Know how to connect and internetwork devices, with real-time data processing.

Related activities:
Lectures and application exercises.
Laboratory:
Internet connection. Devices showing actual real-time monitoring, Exposition of device functionality as services – COAP protocol, Machine-to-machine communications: Broadcast and MQTT application.

Full-or-part-time: 32h
Theory classes: 6h
Laboratory classes: 4h
Self study : 22h

GRADING SYSTEM

Final exam, Group assessments, Laboratory assessments

EXAMINATION RULES.

To be determined

BIBLIOGRAPHY

Basic: