Course guide
295121 - 295II331 - Biomedical Signal Analysis

Unit in charge: Barcelona East School of Engineering
Teaching unit: 707 - ESAII - Department of Automatic Control.

Degree: MASTER'S DEGREE IN INTERDISCIPLINARY AND INNOVATIVE ENGINEERING (Syllabus 2019). (Optional subject).
ERASMUS MUNDUS MASTER'S DEGREE IN ADVANCED MATERIALS SCIENCE AND ENGINEERING (Syllabus 2021). (Optional subject).

Academic year: 2023 ECTS Credits: 6.0 Languages: English

LECTURER
Coordinating lecturer: Torres Cebrian, Abel
Others:
 Primer quadrimestre:
 BEATRIZ FABIOLA GIRALDO GIRALDO - Grup: T10
 JORDI SOLA SOLER - Grup: T10
 ABEL TORRES CEBRIAN - Grup: T10

PRIOR SKILLS
Students must have taken the subject "Data analysis & Pattern Recognition"

Basic knowledge of Signals and Systems Analysis, Statistics, Matlab

REQUIREMENTS
None

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
CEMUEII-17. Apply advanced techniques of acquisition, processing, analysis and interpretation of biomedical signals for the identification and monitoring of physiological biomarkers applied to the diagnostic process (Specific competence of the Healthcare and Biomedical Applications specialty).

Generical:
CGMUEII-01. Participate in technological innovation projects in multidisciplinary problems, applying mathematical, analytical, scientific, instrumental, technological and management knowledge.
CGMUEII-05. To communicate hypotheses, procedures and results to specialized and non-specialized audiences in a clear and unambiguous way, both orally and through reports and diagrams, in the context of the development of technical solutions for problems of an interdisciplinary nature.

Transversal:
05 TEQ. TEAMWORK. Being able to work as a team player, either as a member or as a leader. Contributing to projects pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.
06 URI. EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.
03 TLG. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.
TEACHING METHODOLOGY

The course will be practical and interactive in nature. In theory sessions students will learn about different advanced signal processing methods and its applications to several practical examples. In laboratory sessions students will be challenged to program their own algorithms, facilitating them to quickly apply the newfound knowledge. Finally, students will work in small groups on a global biomedical project. The results of this project will be evaluated in a session of oral presentations.

LEARNING OBJECTIVES OF THE SUBJECT

At the end of this course students should be able to:

- To apply and assess the appropriateness of different advanced signal processing techniques for several types of data, and to extract relevant information and interpret it to obtain clinical conclusions
- To develop and understand advanced methods for removal of artefacts, to detect event, identify the optimum filters, time-frequency and time-scale representations, in biomedical signals
- To define methods for estimate and characterize the most relevant parameters, and linear and non-linear patterns of a biomedical system
- To design an appropriate statistical study for each case, and to be able to analyze and interpret their results

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group</td>
<td>22,0</td>
<td>14.67</td>
</tr>
<tr>
<td>Hours small group</td>
<td>22,0</td>
<td>14.67</td>
</tr>
<tr>
<td>Guided activities</td>
<td>4,0</td>
<td>2.67</td>
</tr>
<tr>
<td>Self study</td>
<td>102,0</td>
<td>68.00</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

Introduction to Biomedical Signal Analysis

Description:
Objectives of biomedical signal analysis
Examples of biomedical signals: origins and characteristics
Basic signal categories: deterministic and stochastic signals. Stationary and non-stationary signals
Definitions: mean, covariance, correlation and power
Types of noise, interferences and artefacts in biomedical signals

Specific objectives:
- To identify different types of biomedical signals, their origins and characteristics
- To understand the different categories of signals, and their types of noise, interferences and artefacts associated of them

Related activities:
Individual questionnaire related to the Individual Test 1

Full-or-part-time: 4h
Theory classes: 2h
Self study : 2h
Filtering for removal artefacts

Description:
- Digital signals: sampling, Shannon and the Nyquist frequency
- Acquisition device: anti-aliasing filter
- Z-transform
- Time-domain filters
- Frequency-domain filters
- Filter design
- Synchronized averaging and ensemble averaging
- Optimal filtering
- Adaptive filters

Specific objectives:
To know, identify and understand different methods for several biomedical signal filtering

Related activities:
Laboratory session 1: Removing artefacts from biomedical signals

Full-or-part-time: 8h
- Theory classes: 4h
- Self study: 4h

Detection of events and waves

Description:
- Envelope extraction
- Analysis of activity
- Temporal event detection
- Correlation analysis and template matching

Specific objectives:
- To identify and apply different techniques to characterize each type of biomedical signal studied
- To define and apply methods for detection of different events and their analysis

Related activities:
Laboratory session 2: Detection algorithms for biomedical signals

Full-or-part-time: 4h
- Theory classes: 2h
- Self study: 2h
Frequency-domain characterization

Description:
- Fourier spectrum
- Power spectral density (PSD) function
- Spectral resolution and leakage
- Welch Periodogram
- Lomb periodogram
- AR spectral estimation
- Measures derived from PSD's: moments and power ratios

Specific objectives:
To identify and analyze methods in frequency domain for the characterization of the biomedical signals studied

Related activities:
- Laboratory session 3: Spectral analysis of biomedical signals

Full-or-part-time: 8h
- Theory classes: 4h
- Self study : 4h

Analysis of nonstationary signals

Description:
- Nonstationary signals
- Short-time Fourier transform
- Continuous wavelet transform
- Ambiguity Function
- Wigner-Ville distribution
- Cohen’s class general time-frequency distributions

Specific objectives:
To know and understand several techniques used in the analysis of the nonstationary biomedical signals

Related activities:
- Laboratory session 4: Time-scale and time-frequency analysis of biomedical signals

Full-or-part-time: 8h
- Theory classes: 4h
- Self study : 4h
Coupled Processes, complexity and non-linear dynamical analysis

Description:
Cardio-respiratory interaction
Cross-spectral and coherence analysis
Mathematical techniques and computational tools to study non-linear, chaotic dynamics and complexity of biomedical systems. Identification and characterization of their patterns.

Specific objectives:
- To define and know the relation between different biomedical systems
- To apply complexity techniques to characterize these interactions and the analysis of their dynamic

Related activities:
Laboratory session 5: Interaction analysis between biomedical signals (cardio-respiratory interaction)

Full-or-part-time: 6h
Theory classes: 3h
Self study: 3h

Statistical Analysis of biomedical data

Description:
Descriptive statistics: statistics used to describe the sample or summarize information about the sample (central tendency or location, dispersion or variability, kurtosis, skewness.)
Inferential statistics: statistics used to make inferences or generalizations about the broader population (hypothesis testing and statistical significance: parametric and non-parametric tests). Analysis of variance, regression and correlation analysis, classification techniques. Accuracy, sensitivity, specificity.

Specific objectives:
To identify, define and apply the appropriate statistical test in each case, according to the type of data, the type of biomedical signal to study, and the analysis (descriptive, classification, modelling, etc) to will be made

Related activities:
Laboratory session 6: Statistical analysis of biomedical data

Full-or-part-time: 6h
Theory classes: 3h
Self study: 3h

GRADING SYSTEM

Laboratory Reports: 6x5%
Technical report of the first project: 15%
Oral presentation of the first project: 15%
Individual test 1: 10%
Technical report of the second project: 10%
Oral presentation of the second project: 10%
Individual test 2: 10%

EXAMINATION RULES.

Laboratory reports will be done in groups of 2 students.
The group project will be carried out in groups of 3-4 students.
Projects written presentation will be formatted as a conference proceedings paper (6-10 pages) and will be presented to the class during the last week of the course (15 min conference presentation + questions). After presentation, a reviewed more complete version of the written report should be submitted.
BIBLIOGRAPHY

Basic:

Complementary:

RESOURCES

Other resources:
Biopac system, Shimmer sensing devices
Biomedical databases
Biomedical engineering laboratory (A8.2)
Matlab, IBM SPSS Statistics, AcqKnowledge acquisition software