295553 - 295EQ021 - Process Control

Coordinating unit: 295 - EEBE - Barcelona East School of Engineering
Teaching unit: 707 - ESAII - Department of Automatic Control
Academic year: 2018
Degree: ECTS credits: 6 Teaching languages: English

Teaching staff
Coordinator: JORDI SOLÀ SOLER
Others: ABEL TORRES CEBRIÀN
 MOISÈS GRAELLS SOBRE

Opening hours
Timetable: Teachers will let students know their questions schedule during the first lecture.

Prior skills
Basic mathematical knowledge (linear algebra, elementary calculus, complex variable and linear differential equations) and basic control knowledge.

Basic knowledge of process simulation (steady state) and the use of commercial packages for process simulation (AspenHYSYS, ChemCAD, UniSim, VMGSim, etc.).

Requirements
None

Degree competences to which the subject contributes
Specific:
CEMUEQ-03. Conceptualize engineering models, apply innovative methods in the resolution of problems and adequate computer applications, for the design, simulation, optimization and control of processes and systems
CEMUEQ-04. Ability to solve problems that are unfamiliar, ill-defined, and have opposed specifications, considering the possible solution methods, including the most innovative, selecting the most appropriate, and being able to correct the implementation, evaluating the different design solutions

General:
CGMUEQ-11. To have the skills of autonomous learning to maintain and improve the competencies of chemical engineering that allow the continuous development of the profession

Transversal:
06 URI. EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.
03 TLG. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.
By the end of the course, students should be able to:

• Analyse and design a control system for a continuous chemical process.
• Simulate and assess the performance of a continuous chemical process including its control system.

In order to achieve these general learning outcomes, a set of specific objectives are established. Thus, by the end of the course, students should be able to:

• Produce a dynamic simulation of a continuous chemical process using general and specific software
• Assess the stability and controllability of a process.
• Propose simple and advanced control structures for a given chemical process.
• Implement the simulation of the process and its control system using the appropriate software tool.
• Identify the set of sensors and actuators required to implement a control system for a chemical process.
• Tune the parameters of the elements of the control system.
• Improve and eventually optimize the control system.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 34h</th>
<th>22.67%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 20h</td>
<td>13.33%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 96h</td>
<td>64.00%</td>
</tr>
</tbody>
</table>
Content

Linear systems modelling

Learning time: 43h
- Theory classes: 12h
- Laboratory classes: 4h
- Self study: 27h

Description:
Basic theory of linear system modelling and identification in time and frequency domains. Presentation of examples and problems in the field of chemical processes.

Related activities:
Two practical sessions in the lab dedicated to the system analysis and modelling, and process simulation.

Specific objectives:
- Linear system modelling: linearization, transfer function, block diagrams, state space representation
- Time response of first and second order systems
- Frequency domain analysis. Bode and Nyquist diagrams
- Stability and controllability
- System identification

Controller analysis and design

Learning time: 27h
- Theory classes: 8h
- Laboratory classes: 2h
- Self study: 17h

Description:
Present the main techniques of feedback controller analysis and design in time and frequency domains, with application to the control of chemical processes.

Related activities:
A practical session devoted to the use of MATLAB for the analysis and design of controllers.

Specific objectives:
- Basic control actions (P, I, D)
- Standard and modified PID configurations
- Experimental PID tuning methods
- Algebraic PID design
- Frequency compensators
Advanced controllers

Learning time: 27h
- Theory classes: 8h
- Laboratory classes: 2h
- Self study: 17h

Description:
Overview of the main advanced control techniques and assessment of their suitability in different types of chemical processes.

Related activities:
A practical session devoted to the use of MATLAB for advanced controller analysis and design.

Specific objectives:
- Modifications on the basic PID
- Advanced PID concepts
- Feedforward, cascade, split-range and ratio control
- Digital control systems

Multivariate control

Learning time: 21h
- Theory classes: 6h
- Laboratory classes: 2h
- Self study: 13h

Description:
Generalisation of the transfer function concept for systems with multiple inputs and outputs. Introduction of controller analysis and design tools for this type of systems.

Related activities:
A practical session will be dedicated to the use of MATLAB for the analysis of multivariate control systems.

Specific objectives:
- External description of multivariate systems
- Analytical tools for multivariate systems
- Controller design tool for multivariate systems
Chemical process control

Description:
To examine the common loops encountered in chemical process control: loop characteristics, type of controller to use, its response, tuning, and limitations.

Related activities:
Half lab session devoted to the analysis and design of different control loops for chemical processes

Specific objectives:
- Degrees of freedom
- Flow control
- Liquid level and pressure control
- Gas pressure control
- Temperature control
- Pump and compressor control
- Boiler control
- Distillation control
- Plantwide control and optimization

<table>
<thead>
<tr>
<th>Learning time: 19h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 6h</td>
</tr>
<tr>
<td>Laboratory classes: 1h</td>
</tr>
<tr>
<td>Self study: 12h</td>
</tr>
</tbody>
</table>

Control instrumentation in chemical processes

Description:
Study of the specific control systems instrumentation for the chemical industry.

Related activities:
Half lab session devoted to the study of instrumentation systems for chemical processes

Specific objectives:
- Standard process and instrumentation diagrams (P&ID)
- Signal acquisition chain
- Sensors and actuators selection and sizing
- Components maintenance

<table>
<thead>
<tr>
<th>Learning time: 13h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td>Laboratory classes: 1h</td>
</tr>
<tr>
<td>Self study: 8h</td>
</tr>
</tbody>
</table>
The final mark is calculated through four assessments: two partial exams, the assessment of the practical works and the mark of classroom exercises, according to the following weights:

- Applied exercises 10%
- Laboratory marks 20%
- First partial exam (P1) 35%
- Second partial exam (P2) 35%

To do the exams, students can have one sheet of notes (two pages DIN A4), the s and z transform tables, and a calculator.

Bibliography

Basic:

Complementary: