295557 - 295EQ033 - Risk and Safety at the Chemical Industry

Coordinating unit: 295 - EEBE - Barcelona East School of Engineering
Teaching unit: 713 - EQ - Department of Chemical Engineering
Academic year: 2018
Degree:
ECTS credits: 6 Teaching languages: English

Teaching staff
Coordinator: Pastor Ferrer, Elsa
Others: Planas Cuchi, Eulalia
 Agueda Costafreda, Alba

Prior skills
Calculus, basic chemistry and thermodynamics

Teaching methodology
- Regular classes
- Hands-on workshops
- Project based learning
- Case studies
- Seminars

Learning objectives of the subject
After this course, the students should be able to identify the risks associated to smart chemical factories and related installations; to evaluate the effects and consequences of severe accidents; to quantify and analyse technological risks.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group:</th>
<th>34h</th>
<th>22.67%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group:</td>
<td>20h</td>
<td>13.33%</td>
</tr>
<tr>
<td></td>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>96h</td>
<td>64.00%</td>
</tr>
</tbody>
</table>
295557 - 295EQ033 - Risk and Safety at the Chemical Industry

Content

<table>
<thead>
<tr>
<th>Introduction to technological risk management</th>
<th>Learning time: 4h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td>- Introduction to accidental environmental impact</td>
<td></td>
</tr>
<tr>
<td>- Risk: definition, types and metrics</td>
<td></td>
</tr>
<tr>
<td>- Risk tolerability</td>
<td></td>
</tr>
<tr>
<td>- Accidental scenarios at the chemical industry</td>
<td></td>
</tr>
<tr>
<td>- Risk analysis structure</td>
<td></td>
</tr>
</tbody>
</table>

Specific objectives:
To understand the concept of risk. To have a general overview of the type of accidents that can occur at the chemical industry. To have a clear picture of the different activities involved in risk assessment and management at the chemical industry.

<table>
<thead>
<tr>
<th>Hazards identification</th>
<th>Learning time: 13h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 9h</td>
</tr>
<tr>
<td>- Hazards identification techniques: definition and types</td>
<td>Practical classes: 4h</td>
</tr>
<tr>
<td>- Hazardous materials at the chemical industry</td>
<td></td>
</tr>
<tr>
<td>- Historical Analysis</td>
<td></td>
</tr>
<tr>
<td>- Hazard & Operability (HAZOP)</td>
<td></td>
</tr>
<tr>
<td>- Hazard Identification (HAZID)</td>
<td></td>
</tr>
<tr>
<td>- Fault trees and event trees</td>
<td></td>
</tr>
</tbody>
</table>

Related activities:
- Laboratory session 1: HAZOP workshop
- Laboratory session 2: Fault Trees and Event Trees workshop

Specific objectives:
To apply risk identification techniques. To identify and understand hazards associated to chemical substances.
Source term

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
</table>
| - Introduction to source terms calculations
- Flow of liquid through a hole in a tank
- Flow of gas or vapour through a hole
- Evaporation of a liquid from a pool
- General guidelines for source term calculations in QRA |

Specific objectives:
To know the main source term models and apply those with simplified hypothesis

<table>
<thead>
<tr>
<th>Learning time: 2h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 2h</td>
</tr>
</tbody>
</table>

Atmospheric dispersion

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
</table>
| - Meteorological factors
- Dispersion modelling: release types and models type
- Gaussian models for neutral gases
- Heavy gas dispersion
- Consequence analysis
- Vulnerability |

Related activities:
- Laboratory session 3: Introduction to Aloha software
- Laboratory session 4: Consequence and vulnerability analysis with Aloha software

Specific objectives:
To quantify the effects and consequences of toxic releases

<table>
<thead>
<tr>
<th>Learning time: 10h</th>
</tr>
</thead>
</table>
| Theory classes: 6h
Practical classes: 4h |
Runaway reactions

Learning time: 3h
Theory classes: 3h

Description:
- Historical analysis
- Exothermicity
- Risk analysis and process engineering
- Study cases

Specific objectives:
To understand the phenomena associated to runaway reactions. To know risk mitigation strategies in case of runaways.

Fire Accidents

Learning time: 4h
Theory classes: 4h

Description:
- Types of fires
- Flammability
- Modelling: solid body model, pool fires, boilover, jet fires, fireballs, flashfires
- Vulnerability

Specific objectives:
To quantify the effects and consequences of fires

Explosions

Learning time: 8h
Theory classes: 6h
Practical classes: 2h

Description:
- Types of explosions
- Blast and overpressure
- Explosions modelling: vapour cloud explosions, Bleves vessel explosions, dust explosions
- Vulnerability

Related activities:
Laboratory session 5: Case study - Analysis of an LNG road tanker real explosion

Specific objectives:
To quantify the effects and consequences of explosions
295557 - 295EQ033 - Risk and Safety at the Chemical Industry

Quantitative risk analysis

<table>
<thead>
<tr>
<th>Learning time: 6h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td>Practical classes: 2h</td>
</tr>
</tbody>
</table>

Description:
- Introduction to QRA: aim of the study and phases
- Standards in QRA
- Examples of simplified and complex set-ups

Related activities:
Laboratory session 6: Simplified AQR of a real system

Specific objectives:
To know the objectives and different parts of QRA. To apply QRA standards in a real system.

Risk mitigation strategies

<table>
<thead>
<tr>
<th>Learning time: 4h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 4h</td>
</tr>
</tbody>
</table>

Description:
- Functional safety
- Prevention and protection safeguards
- LOPA analysis

Specific objectives:
To know the different functional safety strategies an layers of protection in chemical processes.

Qualification system

- Partial exam 30%
- Final exam 40%
- Projects 30%

Regulations for carrying out activities

Exams are all mandatory and all the documentation of the subject is allowed to be used during the exams. All evaluation elements are mandatory.

Bibliography

Basic: