Degree competences to which the subject contributes

Specific:
2. CC09 - Identify the symbols of mechanical systems and obtain the knowledge to determine the number of drives that will allow the desired movement of the system.

Transversal:
1. EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.

Teaching methodology

Classes of theory and problems
Lab.

Learning objectives of the subject

Mechanical systems are the material basis of automation, per therefore an Automàtica i ingeniiero in industrial electronics, must understand their movimiento, transmission and causes that generate it. The objective of this course is to convey to students these skills.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 45h</th>
<th>Hours large group: 30h</th>
<th>66.67%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours small group:</td>
<td>15h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33.33%</td>
</tr>
</tbody>
</table>
Characterization of Mechanisms

Learning time: 30h
- Theory classes: 8h
- Laboratory classes: 4h
- Self study: 18h

Description:
- Cinematic elements
- Degrees of freedom
- Schematization

Related activities:
- CLASS THEORY AND PROBLEMS
- LABORATORY PRACTICE
- LEARNING ASSESSMENT

Specific objectives:
- Introduce students to the symbolism of the mechanical systems and gain the knowledge to determine the number of drives that will allow the desired motion of the system.
- Acquire the concepts of machine, mechanism, kinematic chain element and kinematic pair.
- Identify and classify the pairs of a mechanism.
- Calculate and analyze the degrees of freedom and mobility of a mechanism.
- Understand the meaning of the reference system.
- Training for outlining kinematic mechanisms.
- Mastering the concept of kinematic equivalence.

Elements of Machines

Learning time: 45h
- Theory classes: 16h
- Laboratory classes: 2h
- Self study: 27h

Description:
- Transmission Axes. Elements of Union
- Gears and Gear Trains
- Belts and Transmission Chains
- Bearings and Bearings
- Brakes and Clutches
- Springs. Linear guides. Actuators

Related activities:
- CLASS THEORY AND PROBLEMS
- LABORATORY PRACTICE
- LEARNING ASSESSMENT

Specific objectives:
- The objective is to understand and know how to analyze the main elements of machines
Space kinematics

Learning time: 17h 30m
- Theory classes: 4h
- Laboratory classes: 3h
- Self study: 10h 30m

Description:
Calculation of velocities in spatial mechanisms.
Calculation of accelerations in spatial mechanisms.

Related activities:
CLASS THEORY AND PROBLEMS
LABORATORY PRACTICE
LEARNING ASSESSMENT

Specific objectives:
Understand and calculate the general movement of spatial mechanisms, from a cinematic point of view.

Space Dynamics

Learning time: 20h
- Theory classes: 2h
- Laboratory classes: 6h
- Self study: 12h

Description:
Newton’s laws. Diagram of the free body.
Resolution of static and dynamic problems.

Related activities:
THEORY CLASSES AND PROBLEMS
LABORATORY PRACTICES
LEARNING ASSESSMENT

Specific objectives:
Identify the causes of movement.
Represent and interpret vectorially the state of exterior solicitations of a spatial mechanical system.
Solve the calculation of the stresses that cause movement in the space mechanical systems.
Theory Classes and Problems

<table>
<thead>
<tr>
<th>Description</th>
<th>Support materials</th>
<th>Specific objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classroom work</td>
<td>Notes from the Digital Campus, Transparencies</td>
<td>Know the symbology of the mechanical systems and obtain the knowledge to determine the number of drives that make possible the desired movement of the System. Know and calculate the main elements of machines. Acquire the ability to generate and solve the equations of motion for the mechanical space systems.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hours</th>
<th>Theory classes: 33h</th>
</tr>
</thead>
</table>

Laboratory Practice

<table>
<thead>
<tr>
<th>Description</th>
<th>Support materials</th>
<th>Specific objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conduct by the student of practical work and mechanical computer simulations</td>
<td>Computer and software simulation, Mechanical models</td>
<td>Perform model analysis of a mechanism and simulate its movements to solve cinematic and dynamic analysis and design problems.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hours</th>
<th>Laboratory classes: 15h</th>
</tr>
</thead>
</table>

Learning Assessment

<table>
<thead>
<tr>
<th>Description</th>
<th>Specific objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual written tests</td>
<td>Certify the level of achievement of learning</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hours</th>
<th>Guided activities: 5h</th>
</tr>
</thead>
</table>

Planning of Activities

340636 - FOME-R1P12 - Mechanical Fundamentals

THEORY CLASSES AND PROBLEMS

- **Hours**: 33h
 - Theory classes: 33h

LABORATORY PRACTICE

- **Hours**: 15h
 - Laboratory classes: 15h

LEARNING ASSESSMENT

- **Hours**: 5h
 - Guided activities: 5h
The final grade (QF) of the subject is obtained from the expression:
\[QF = 0.25 \times x + 0.75 \times \text{Rated Practice Final Exam.} \]
Evaluation acts and weight are:
1st act of evaluation (weight 0.25):
Practices (realitzades in mechanical laboratoroi in groups of two students with teacher support. Subsequently a report that will help you deliver the QUALIFICATION is.)
2nd act of evaluation (weight 0.75):
Final Exam. (includes tota matter)
Only this second evaluative act will be Reassessable

Bibliography

Basic:

