340638 - AUDI-R3P10 - Automation and Industrial Digitization

Coordinating unit: 340 - EPSEVG - Vilanova i la Geltrú School of Engineering
Teaching unit: 707 - ESAII - Department of Automatic Control
Academic year: 2019
Degree: MASTER’S DEGREE IN AUTOMATIC SYSTEMS AND INDUSTRIAL ELECTRONICS (Syllabus 2012). (Teaching unit Optional)
ECTS credits: 5
Teaching languages: Catalan, Spanish

Teaching staff
Coordinator: Raya Giner, Cristobal
Others: Rio Fernandez, Joaquin Del
Raya Giner, Cristobal
Vidal Ferré, Rafael

Prior skills
Recommended basic knowledge of PLCs, electronics and communications

Degree competences to which the subject contributes
Specific:
CEV08. CEV08 - Ability to select sensors and preparation for the design of measurement systems.
CEV03. CEV03 - Analyze and evaluate the different protocols and wireless networks in the field of robotics and automated systems.
CEV10. CEV10 - Identify solutions in smart environments through design and implementation of sensor networks and services environment.

Teaching methodology
In the learning sessions of this subject, the professor will introduce theoretical explanations and illustrative examples, concepts, methods and basic results of the matter. These sessions are made of theoretical classes and sessions of laboratory. Along the course the method of project/problems based learning (PBL) will be applied. In the theoretical classes the theoretic explanations and the basic concepts of the subject of study will be introduced, and in the practical sessions of laboratory the professor will increase the knowledge with the concepts and necessary methods to be able to carry out the problems or projects to solve in the practical work. The practices of laboratory will come true individually, or in reduced groups.
The tasks outside of the classroom that one must carry out or individually or in group, they are the base of the activities, and obligatory to be able to progress appropriately in the subject.

Learning objectives of the subject
Learn the basics of industrial scanning or Industry 4.0.
Know and identify the appropriate smart sensors to optimize processes and increase efficiency or functionality.
PLC programming oriented industrial digitization.
Remote monitoring of digitized processes, Smart Data and Cloud Computing
Cybersecurity in industrial digitization.
Study load

<table>
<thead>
<tr>
<th>Total learning time: 60h</th>
<th>Hours large group:</th>
<th>45h</th>
<th>75.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours small group:</td>
<td>15h</td>
<td>25.00%</td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>Topic</th>
<th>Learning time</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to industry 4.0</td>
<td>2h</td>
<td>Introduction to industry 4.0 or industrial digitalization. Definitions and applications.</td>
</tr>
<tr>
<td>Monitoring and data acquisition</td>
<td>12h</td>
<td>Monitoring and data acquisition sensors by DAQ (Data Acquisition) systems, and data storage using LabView for further analysis.</td>
</tr>
<tr>
<td>Automation with PLCs</td>
<td>12h</td>
<td>Programming of PLCs and use of GRAFCET.</td>
</tr>
<tr>
<td>SCADA systems</td>
<td>12h</td>
<td>Automated systems supervision using SCADA (Supervisory Control And Data Acquisition). Data storage in registers and databases using SQL, for further analysis.</td>
</tr>
<tr>
<td>Industrial control systems: Interconnection and cybersecurity</td>
<td>12h</td>
<td>Secure interconnection of industrial control systems (ICS) with information technology (IT) infrastructures and Internet of a production center, from the network point of view.</td>
</tr>
</tbody>
</table>

Qualification system

This evaluation is formed by practical works, and works or problems in a group or individual.
Bibliography

Others resources:

Hyperlink

http://www.industriaconectada40.gob.es
Resource

http://www.infoplc.net/industria-4
Web Industrial Automation, Robotics and Industry 4.0