Degree competences to which the subject contributes

Transversal:
1. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.

Teaching methodology

-

Learning objectives of the subject

-

Study load

<table>
<thead>
<tr>
<th>Study load</th>
<th>Total learning time: 74h</th>
<th>Hours large group:</th>
<th>0h</th>
<th>0.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group:</td>
<td>16h</td>
<td>21.62%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hours small group:</td>
<td>8h</td>
<td>10.81%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>50h</td>
<td>67.57%</td>
<td></td>
</tr>
</tbody>
</table>
In this section we will review the main concepts related to the measurement of corneal and anterior chamber parameters. We will discuss the main limitations of conventional keratometry, particularly in the determination of IOL power in patients previously submitted to refractive surgery. Several topography techniques will be described, including Placido-based topographers and Scheimpflug imaging. Topography maps will be interpreted in health and disease (keratoconus, irregular astigmatism...).

(ENG) - Topografia corneal

Description:
In this section we will review the main concepts related to the measurement of corneal and anterior chamber parameters. We will discuss the main limitations of conventional keratometry, particularly in the determination of IOL power in patients previously submitted to refractive surgery. Several topography techniques will be described, including Placido-based topographers and Scheimpflug imaging. Topography maps will be interpreted in health and disease (keratoconus, irregular astigmatism...).

Learning time: 6h
- Theory classes: 3h
- Self study: 3h

(ENG) - Aberrometria corneal i ocular

Description:
The foundamental concepts of ocular and corneal aberrometry will be discussed, with a description of the techniques (ray tracing and devices of the Hartman-Shack type). Zenike polynomials will be described as a mathematical method to determine aberrations. Aberrations will be discussed in health, including physiological changes with age, in pathological conditions, in contact lens fitting for orthokeratology and in refractive surgery.

Learning time: 6h
- Theory classes: 3h
- Self study: 3h

(ENG) - Làsers a la cirurgia refractiva i ocular

Description:
In this section we will discuss physical and optical properties of different type of lasers used in refractive and ocular surgery.

Learning time: 4h
- Theory classes: 2h
- Self study: 2h

(ENG) - Exàmens optomètrics pre- i post-operatoris

Description:
In this section we will address the various optometric tests that are commonly conducted before refractive and ocular surgery. In particular, we will discuss biometry (both ultrasound and optical coherence). Other aspects to be described are VA logMAR measurements, estereoacuity and contrast sensitivity in patients implanted with intraocular lenses, etc.

Learning time: 17h
- Theory classes: 7h
- Practical classes: 3h
- Self study: 7h
(ENG) - Tècniques de cirurgia refractiva i ocular

<table>
<thead>
<tr>
<th>Learning time: 15h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 5h</td>
</tr>
<tr>
<td>Guided activities: 5h</td>
</tr>
<tr>
<td>Self study : 5h</td>
</tr>
</tbody>
</table>

Description:
In this section we will describe the different techniques for cataract and refractive surgery (LASIK, LASEK, PRK, EpilASIK, etc.). Manual and femtosecond-based techniques will be compared. Finally, advantages and disadvantages of all techniques will be addressed and their main applications will be discussed.

(ENG) - Complicacions associades a la cirurgia refractiva i ocular

<table>
<thead>
<tr>
<th>Learning time: 15h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 5h</td>
</tr>
<tr>
<td>Guided activities: 5h</td>
</tr>
<tr>
<td>Self study : 5h</td>
</tr>
</tbody>
</table>

Description:
In this section, developed in a blended-learning modality, we will present the various complications associated with each of the refractive surgery techniques and we will address strategies for their management.

Intraocular lenses: formulae and design

<table>
<thead>
<tr>
<th>Learning time: 4h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 4h</td>
</tr>
</tbody>
</table>

Description:
In this section we will discuss the geometry, design and optical characteristics of the various types of monofocal and multifocal IOLs (refractive, diffractive, hybrid, apodized, aspheric, toric, etc.). Besides, the various parameters required to determine lens power will be described, as well as the formulas used to determine power and the most common errors leading to post-operative uncorrected refractive error.

Crosslinking

<table>
<thead>
<tr>
<th>Learning time: 2h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 2h</td>
</tr>
</tbody>
</table>

Description:
This section will examine the various approaches for the surgical management of keratoconus, including crosslinking and intrastromal segment implantation.

Qualification system

Bibliography

Basic:

Complementary:

Others resources:

Hyperlink

Newsletter de l’eTimes

Resource

Pubmed

Resource

ESCRS

Resource