Course guide
390218 - ISM1 - Sensors and Data Acquisition

Unit in charge: Barcelona School of Agri-Food and Biosystems Engineering
Teaching unit: 710 - EEL - Department of Electronic Engineering.
Degree: MASTER'S DEGREE IN ENABLING TECHNOLOGIES FOR THE FOOD AND BIOPROCESSING INDUSTRY (Syllabus 2014). (Compulsory subject).
MASTER'S DEGREE IN ENABLING TECHNOLOGIES FOR THE FOOD AND BIOPROCESSING INDUSTRY (Syllabus 2020). (Compulsory subject).

Academic year: 2023 ECTS Credits: 5.0 Languages: Spanish, English

LECTURER

Coordinating lecturer: RAMON PALLAS ARENY
Others: Pallas Areny, Ramon

PRIOR SKILLS

Graduate students in science, engineering or technology disciplines with a diploma in areas close to agricultural engineering, food engineering or biosystems engineering, equivalent to 240 ETCS. Graduate students in science, engineering or technology disciplines with a diploma in areas close to agricultural engineering, food engineering or biosystems engineering, equivalent to 240 ETCS. Chemical engineering and biology, for example, also provide an acceptable background

REQUIREMENTS

Presentiality.

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
1. Determination of the applicability to the food and bioprocesses sector of sensors and instrumentation techniques for measuring and data acquisition. Ability to detect the advantages and limitations of the diverse technologies and measurement equipments.
2. Ability to choose the measurement and acquisition data instrumentation in order to optimize the efficiency of the agri-food and biotechnological industries. Designing the implementation of the use and maintenance protocols of such systems.
3. Identification of the opportunities and knowledge of the scientific basis of nanotechnology application in the treatment of bioproducts. Identification of the benefits and risks of nanotechnology applied to food packaging and conservation.

General:
4. Ability to apply the language and techniques of industrial management in the agrifood and biotechnological sector
5. Identification of the industrial technologies with larger future impact and develop new applications of such technologies in the food and biotechnological industry.
6. Ability to indentify and use monitoring systems in quality control of food products.
7. Ability to assess and improve the design of processes and products considering social and environmental impacts.
Transversal:
8. SUSTAINABILITY AND SOCIAL COMMITMENT: Being aware of and understanding the complexity of the economic and social phenomena typical of a welfare society, and being able to relate social welfare to globalisation and sustainability and to use technique, technology, economics and sustainability in a balanced and compatible manner.

9. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.

TEACHING METHODOLOGY

Lectures will be based on interactive explanations in which theoretical concepts and their application will be presented. Application sessions will be devoted to apply theoretical concepts, with emphasis on the approach, problem solving methods and results analysis. They will foster open questions for discussion on the scope of theoretical concepts and their application to the cases studied. Exercises of implementation, which will be reviewed in the classroom, will be proposed each week to promote autonomous learning and consolidate knowledge.

LEARNING OBJECTIVES OF THE SUBJECT

This subject comprises the concepts and skills required to select and correctly use and maintain measurement instruments and ancillary equipment in order to efficiently use water and energy, minimize waste, improve control and productivity, and fulfill regulations in agro-food and biotechnology industries.

The subject is organized in two parts. The first part deals on instrumentation fundamentals and measurement methods and will include an in-depth review of concepts dealt with in undergraduate courses or previous master courses. The second part is devoted to a detailed analysis of general measurement methods in process control engineering and specific methods used in bioprocess control. This subject comprises the concepts and skills required to select and correctly use and maintain measurement instruments and ancillary equipment in order to efficiently use water and energy, minimize waste, improve control and productivity, and fulfill regulations in agro-food and biotechnology industries.

The subject is organized in two parts. The first part deals on instrumentation fundamentals and measurement methods and will include an in-depth review of concepts dealt with in undergraduate courses or previous master courses. The second part is devoted to a detailed analysis of general measurement methods in process control engineering and specific methods used in bioprocess control.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>90,0</td>
<td>72.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>35,0</td>
<td>28.00</td>
</tr>
</tbody>
</table>

Total learning time: 125 h

CONTENTS

Fundamentals of measurements, sensors and data acquisition

Description:

Full-or-part-time: 45h
Theory classes: 15h
Self study : 30h
Instrumental techniques for in line, on line, and at line measurements

Description:
Instrumental methods for in-line, on-line, and at-line measurements: process and environmental conditions. Temperature, pressure, flow, flow velocity, solid and liquid level, and relative humidity measurements.

Full-or-part-time: 30h
Theory classes: 10h
Self study : 20h

Chemical sensors and biosensors

Description:

Full-or-part-time: 45h
Theory classes: 15h
Self study : 30h

GRADING SYSTEM

Ongoing assessment based on three exams that last from 30 to 45 minutes; the first one around week 8 (N1), the second one around week 12 (N2), and the third one at the last week of the semester (N3), and on the participation in the sessions wherein homework is reviewed.
The final grade is \[N = 0.4N_1 + 0.3N_2 + 0.2N_3 + 0.1N_4. \]

EXAMINATION RULES.

Presentaility. Continuous monitoring.

BIBLIOGRAPHY

Basic:

Complementary: