480012 - ENSD - Fundamentals of Engineering, Sustainability and Development

Coordinating unit: 250 - ETSECCPB - Barcelona School of Civil Engineering
Teaching unit: 751 - DECA - Department of Civil and Environmental Engineering
Academic year: 2019
Degree: MASTER'S DEGREE IN SUSTAINABILITY SCIENCE AND TECHNOLOGY (Syllabus 2013). (Teaching unit Compulsory)
ECTS credits: 5
Teaching languages: Spanish

Teaching staff
Coordinator: Bàrbara Sureda Carbonell
Others: Olga Alcaraz Sendra

Degree competences to which the subject contributes

Basic:
CB7. That students can apply their knowledge and ability to solve problems in new or unfamiliar environments within broader (or multidisciplinary) contexts related to their field of study.
CB8. Students should be able to integrate knowledge and handle complexity, and formulate judgments based on information that was incomplete or limited, include reflecting on social and ethical responsibilities linked to the application of its conocimientos and judgments.
CB9. That students can communicate their conclusions and the knowledge and rationale underpinning these, to specialist and non-specialist audiences clearly and unambiguously.
CB10. That students have the learning skills to allow them to continue studying in a way that will have to be largely autodirigido or autonomous.

Specific:
3. The ability to critically analyse and assess theories, strategies and policies on development and sustainability; perspectives on the sustainability paradigm, discussions within the field and its environmental, social, cultural and economic implications; the particularities of and differences between environmental and ecological economics; and the problems of valuing goods, services, resources and externalities economically.
CE02. The ability to apply knowledge of societies' evolution, their impact on the environment, urban transition and the principal defining characteristics of present-day societies, as well as techniques and lessons related to socio-environmental conflict.
CE07. The ability to design, develop and apply, in an integrated and coordinated manner, the theories and analytical techniques of the social, economic and Earth sciences, as well as management and research-action techniques and approaches based on sustainability science and technology in the fields of biodiversity and natural resources, the built environment and services, and production systems and information.
CE03. The ability to critically analyse theories and perspectives on the traits and properties of the geosphere and biosphere that facilitate and frame the development of socio-environmental systems, as well as the main challenges posed by climate change.

Generical:
CG03. The ability to analyze, evaluate and synthesize, critically, new and complex ideas and promote, within academic and professional, scientific, technological, social or cultural knowledge society contexts.

Transversal:
1. SUSTAINABILITY AND SOCIAL COMMITMENT: Being aware of and understanding the complexity of the economic and social phenomena typical of a welfare society, and being able to relate social welfare to globalisation and sustainability and to use technique, technology, economics and sustainability in a balanced and compatible manner.
480012 - ENSD - Fundamentals of Engineering, Sustainability and Development

Teaching methodology

Learning objectives of the subject

At the end of the subject, the students:
- Must be able to develop and apply personal and interpersonal dynamics (sensitivity, empathy, cooperation, …), for the analysis and resolution of conflicts and also for decision making.
- Must know and understand the state of the world from the point of view of the existence of limits and imbalances.
- Must know, understand and analyze, with a local and global vision, the significant problems that hinder sustainable development and contextualize them.
- Must know and analyze the concept of sustainable development and develop the capacity to apply it to achieve a more sustainable world.
- Must be able to analyze the role of technoscience and the social and environmental impact of technology.
- Must know and analyze with a critical spirit, existing systems and current and future issues in decision making worldwide.
- Must know the main international agendas that work towards sustainability.

Study load

| Total learning time: 125h | Hours large group: 30h 24.00% | Hours medium group: 0h 0.00% | Hours small group: 0h 0.00% | Guided activities: 15h 12.00% | Self study: 80h 64.00% |
## Content

<table>
<thead>
<tr>
<th>Dynamics of change: personal and interpersonal</th>
<th>Learning time: 3h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 3h</td>
</tr>
</tbody>
</table>

**Description:**
Sensitivity, empathy, cooperation, analysis and resolution of conflicts, decision making …
This is a transversal theme that will be developed throughout the course with various tools and methodologies that aim to work and facilitate the development of personal and interpersonal change dynamics.

<table>
<thead>
<tr>
<th>Development model: growth dynamics</th>
<th>Learning time: 9h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 9h</td>
</tr>
</tbody>
</table>

**Description:**
Pressures: population, imbalances, economic growth, consumption growth (material resources, energy consumption, food resources …)

**Related activities:**
BaU Variables (population, GDP, energy consumption, …).
Agro-food model and land use.

<table>
<thead>
<tr>
<th>Development model: impacts and conflicts</th>
<th>Learning time: 6h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 6h</td>
</tr>
</tbody>
</table>

**Description:**
Impacts on natural cycles, impacts at the local level, global impacts.
External debt.
Urbanization process
Environmental conflicts.

**Related activities:**
Analysis of atmospheric pollution.
Case study (environmental conflicts).
<table>
<thead>
<tr>
<th>Sustainability paradigm</th>
<th>Learning time: 6h</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Description:</strong></td>
<td>Theory classes: 6h</td>
</tr>
<tr>
<td>Historical introduction</td>
<td></td>
</tr>
<tr>
<td>Systemic paradigm vs. mechanistic paradigm</td>
<td></td>
</tr>
<tr>
<td>Concept of sustainable development and its evolution (carrying capacity, needs vs. capacities, ...)</td>
<td></td>
</tr>
<tr>
<td>Concept interpretations</td>
<td></td>
</tr>
<tr>
<td>Sustainable Human Development</td>
<td></td>
</tr>
<tr>
<td>Indicators and indices of sustainability</td>
<td></td>
</tr>
<tr>
<td>Large couplings and decoupling challenges</td>
<td></td>
</tr>
<tr>
<td><strong>Related activities:</strong></td>
<td></td>
</tr>
<tr>
<td>Needs vs. Capabilities</td>
<td></td>
</tr>
<tr>
<td>Gapminder</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concretion of the sustainability paradigm</th>
<th>Learning time: 9h</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Description:</strong></td>
<td>Theory classes: 9h</td>
</tr>
<tr>
<td>Sustainability alternatives to the current development model: theory of decrease / Guaranteed Basic Income / green economy / economy of the common good</td>
<td></td>
</tr>
<tr>
<td>Sustainable production: circular economy</td>
<td></td>
</tr>
<tr>
<td>Ethical dimension in decision making</td>
<td></td>
</tr>
<tr>
<td>Sustainable consumption</td>
<td></td>
</tr>
<tr>
<td>Sustainable management resources (water, energy, ...)</td>
<td></td>
</tr>
<tr>
<td><strong>Related activities:</strong></td>
<td></td>
</tr>
<tr>
<td>Circular economy.</td>
<td></td>
</tr>
<tr>
<td>Ethics.</td>
<td></td>
</tr>
<tr>
<td>Sustainable consumption activity: fair trade, proximity consumption cooperatives, energy cooperatives, Zero Waste, ......</td>
<td></td>
</tr>
</tbody>
</table>
International organizations and Agenda for development

Description:
- Bretton Woods organizations
- UN
- Other organizations
- From the MDGs to the SDGs
- Other agendas

Related activities:
- International organizations
- Evolution and goals ODS

Learning time: 6h
  Theory classes: 6h

Qualification system

Regulations for carrying out activities
Bibliography

Basic:


Complementary:


Others resources:

Hyperlink


openknowledge.worldbank.org/bitstream/handle/10986/25141/9781464809613.pdf

EUROSTAT 
https://ec.europa.eu/eurostat/data/database

FAOSTAT (Food and agriculture data) 

GAPMINDER 
https://www.gapminder.org/tools/#$chart-type=bubbles

IEA (International Energy Agency) 
https://www.iea.org/statistics/?country=WORLD&year=2016&category=Energy%20supply&indicator=TPES bySource&mode=chart&dataTable=BALANCES

IMF Data (IMF - International Monetary Fund) 
https://www.imf.org/en/Data

UN DESA (United Nations. Department of Economic and Social Affairs) 

UN ODS (United Nations. Objetivos de Desarrollo Sostenible) 
https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollo-sostenible/

WRI (World Resources Institute) 
https://www.wri.org/resources/data_sets

WB (World Bank) 
https://data.worldbank.org/

https://www.raeng.org.uk/publications/reports/engineering-for-sustainable-development