Course guide
480073 - 480073 - Energy Economics and Sustainable Energy Systems

Unit in charge: Barcelona School of Civil Engineering
Teaching unit: 709 - DEE - Department of Electrical Engineering.
Degree: MASTER’S DEGREE IN SUSTAINABILITY SCIENCE AND TECHNOLOGY (Syllabus 2013). (Optional subject).
Academic year: 2022
ECTS Credits: 5.0
Languages: English

LECTURER
Coordinating lecturer: Jordi de la Hoz
Helena Martín

Others:

TEACHING METHODOLOGY
Master class, guided study sections, continuous evaluation activities and final project.

LEARNING OBJECTIVES OF THE SUBJECT
The aim of the course is to bring students to the fundamentals of energy economics and the close relationship between economics and sustainable energy systems, providing them the basic tools needed to understand the current energy problems and their interconnection with other fields. In essence it is intended:
- To know the basic terminology and classifications related to energy products
- To understand the accounting of energy flows from the original supply sources (through conversion processes) to end-use demands
- To get familiar with the main energy data sources available at international level
- To be able to analyse the supply and demand situation of a country from its energy balance
- To understand and analyse energy demand from various perspectives and methodologies.
- To know the basis of the European renewable energy policy and the mechanisms so far applied to promote it and the lessons learned
- To know and understand the fundamentals behind the investment decision on a renewable energy asset
- To be familiar with the basis of the energy systems planning

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>80,0</td>
<td>63.95</td>
</tr>
<tr>
<td>Hours medium group</td>
<td>9,8</td>
<td>7.83</td>
</tr>
<tr>
<td>Hours small group</td>
<td>9,8</td>
<td>7.83</td>
</tr>
<tr>
<td>Hours large group</td>
<td>19,5</td>
<td>15.59</td>
</tr>
<tr>
<td>Guided activities</td>
<td>6,0</td>
<td>4.80</td>
</tr>
</tbody>
</table>

Total learning time: 125.1 h
CONTENTS

1. INTRODUCTION.

Description:
1.1. Basic definitions: primary and secondary, renewable and non-renewable, commercial and non-commercial, conventional and non-conventional energy products.
1.2. Energy supply chain components.
1.3. Flow of energy products.

Full-or-part-time: 1h 30m
Theory classes: 1h 30m

2. ENERGY BALANCE

Description:
2.1. Definition of energy balance, structure and typologies.
2.2. Analysis of the information of the energy balance. Energy supply mix, self-reliance in supply, share of renewable energies, efficiency of electricity generation, power generation mix, refining efficiency, overall energy transformation efficiency, per capita consumption of primary and final energy, energy intensity.

Full-or-part-time: 3h
Theory classes: 3h

3. ECONOMIC FOUNDATIONS OF ENERGY DEMAND

Description:
3.1. Microeconomics basic concepts.
3.3. Cost minimization problem of the producer. Production function, isoquant curves, total cost of production, isocost lines, conditional factor demand functions, production expansion path.

Full-or-part-time: 3h
Theory classes: 3h

4. ALTERNATIVE APPROACHES TO ENERGY DEMAND ANALYSIS.

Description:
4.2. Decomposition analysis. Analysis of change in total energy demand. Analysis of changes in energy intensities.

Full-or-part-time: 3h
Theory classes: 3h
5. EUROPEAN RENEWABLE ENERGY POLICY

Description:
5.1. Energy balance and renewable energy policy
5.2. Legal framework and policy targets
5.3. Support mechanisms to promote renewable energy systems
5.4. Lessons learned from the European experience and prospective

Full-or-part-time: 1h 30m
Theory classes: 1h 30m

6. ECONOMICS OF RENEWABLE ENERGY ASSETS FROM INVESTORS’ PERSPECTIVE

Description:
6.1. Fundamentals for the economic evaluation of the renewable energy asset
6.2. Economic indexes and selection criteria
6.3. Investment decision, uncertainty and risk
6.4. Regulatory retroactivity and investment risk
6.5. A simplified methodology applied to identify the regulatory risk

Full-or-part-time: 3h
Theory classes: 3h

7. ENERGY SYSTEM PLANNING AND ECONOMICS FROM THE GOVERNMENT PERSPECTIVE

Description:
7.1. The need of a framework for an integrated analysis
7.2. Energy systems models and evolution
7.3. Introduction to sustainable energy planning

Full-or-part-time: 3h
Theory classes: 3h

8. Guided activities

Description:
- Preparation of an energy balance from data of energy products flows.
- Analysis of the energy balance of a country.
- Data collection and analysis of the primary energy demand and energy intensity at world and regional levels in a determined period, identifying the most significant trends and performing international comparisons.
- Application of different decomposition analysis methodologies to primary energy demand and energy intensity data at world and regional levels in a determined period, identifying the most significant trends and performing international comparisons.
- Analysis of the regulatory risk associated to the support mechanisms devoted to promote the renewable energy systems.
- Determination of a simplified economic model for determining the suitability of an investment in a renewable energy asset.
- The use of commercial software in order to be aware of the concepts and necessary requirements when planning a sustainable energy system.
- Final project

Full-or-part-time: 27h
Guided activities: 27h
GRADING SYSTEM

Continuous evaluation of the work and activities carried out

BIBLIOGRAPHY

Basic: