480093 - TDS - Socio-Environmental Data Science

<table>
<thead>
<tr>
<th>Coordinating unit:</th>
<th>250 - ETSECCPB - Barcelona School of Civil Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching unit:</td>
<td>715 - EIO - Department of Statistics and Operations Research</td>
</tr>
<tr>
<td>Academic year:</td>
<td>2019</td>
</tr>
<tr>
<td>Degree:</td>
<td>MASTER’S DEGREE IN SUSTAINABILITY SCIENCE AND TECHNOLOGY (Syllabus 2013). (Teaching unit Optional)</td>
</tr>
<tr>
<td>ECTS credits:</td>
<td>5</td>
</tr>
</tbody>
</table>

Teaching languages: English

Teaching staff

Coordinator: KARINA GIBERT OLIVERAS

Others: Karina Gibert Oliveras

Miquel Sànchez-Marrè

Opening hours

Timetable: Send an email to the corresponding lecturer to fix the meeting: karina.gibert@upc.edu, miquel@cs.upc.edu

Prior skills

- Basics knowledge of R package
- Basic programming skills
- Basic Statistics

Requirements

Fonaments d’Estadística Aplicada i Mesura de la Sostenibilitat i el Desenvolupament

Degree competences to which the subject contributes

Specific:

CE04. The ability to apply, critically and effectively, conceptual frameworks, data collection and processing techniques, applied statistics, mathematical modelling, systems analysis, geographic information systems, information and communication technologies and industrial ecology to meeting the challenges of sustainability and sustainable development.

Teaching methodology

MD1: Lecture or conference (EXP): Sharing knowledge through lectures by professors or by external guest speakers.

MD4: Tutorials of practical or theoretical works (TD): to perform an activity in the classroom, or a theoretical or practical exercise, individually or in small groups, with the advice of the teacher

and

MD6: Extensive project (PA): learning based in the design, planning and realisation in groups of a complex or extensive project or piece of work, applying and extending knowledge and writing a report on this approach and the results and conclusions
The main goal of this course is to provide a global view of the application of Data Science to real socio-environmental problem solving. The use of Data Mining techniques is presented in a complete Knowledge Discovery process devoted to extract relevant information from different kind of socio-environmental data (surveys, monitoring, data-warehouses...) to support decision-making from phenomena or organizations with high degrees of complexity. The course is focused to real socio-environmental problems and to provide the proper elements to design efficient and correct Data Mining processes, according to the real problem targeted at every application, as well as to analyze the Data Scientist skills required to deal with. Main Data Mining methods are presented; training on several important practical aspects is provided, like effects on wrong pre-processing, wrong selection of data mining method, wrong interpretation of results or assumption of false hypothesis for the analyzed process; effective communication of results to decision-makers and reporting is also carefully analyzed. This issues will help to guarantee the validity and utility of final results, as well as real impact of the analysis into the target domain. Real cases from socio-environmental field, like water management, sustainable touristic activities, pollution or land uses will be discussed to show the versatility of the discipline to provide better knowledge and decision support to a wide spectrum of very difficult real socio-environmental problems.

| Study load |
|---|---|---|
| **Total learning time:** 125h | Hours large group: | 30h | 24.00% |
| | Guided activities: | 15h | 12.00% |
| | Self study: | 80h | 64.00% |
1. Introduction

Description:
1.1. Data Science, Data Mining, Knowledge Discovery from Databases and Intelligent decision support.
1.2. Data Mining Pillars: Statistics, Artificial Intelligence, Information Systems, Visualization

Related activities:
Presentation of the project to be developed along the course and working teams building

Specific objectives:
The Data Science and the overall process of Knowledge Discovery from Databases is presented, together with its steps and including Data Mining itself.
The disciplinary pillars of Data Mining are introduced: Statistics and Artificial Intelligence, Information Systems and Data Visualization.
Finally, the basic schema of a Knowledge Discovery process is presented.

Learning time: 2h 30m
Theory classes: 2h 30m

2. Scope, KDD process

Description:
2.1. Types of Problems suitable of Data Science
2.2. Ill-structured domains
2.3. A priori knowledge; Implicit knowledge. Causes and consequences
2.4. Main Data Mining Softwares (R, weka, rapid miner)

Specific objectives:
Different natures of real socio-environmental problems and their different levels of complexity are discussed according to the classification proposed by Simpson. Ill-structured domains are introduced, as well as a priori and implicit knowledge management, causes and consequences.
Some software tools for developing data mining tasks are presented, with special focus on R system.

Learning time: 2h
Theory classes: 2h

3. Formalising the Data Science problem and designing the complete Knowledge Discovery process

Description:
The steps of the Data Science process and the Knowledge Discovery process involved are introduced.

Related activities:
Define your project, identify data sources

Learning time: 1h
Theory classes: 1h
4. Data Structures

Learning time: 1h
Theory classes: 1h

Description:
- 4.1 Main Socio-environmental data sources
- 4.2. Data and Metadata Representation

Related activities:
Build the metadata file for your dataset

Specific objectives:
- Main data structures analyzed by Data Mining techniques in socio-environmental fields.
- Importance of metadata, formats and contents

5. Preprocessing

Learning time: 5h
Theory classes: 5h

Description:
- 5.0 Reference preprocessing methodology
- 5.1. Data quality issues
- 5.2 Filtering and Sampling
- 5.3 Missing data treatment
- 5.4 Outliers
- 5.5 Data transformation and Derived data
- 5.6. Feature weighting and dimensionality reduction

Related activities:
Preprocess your data for the project

Specific objectives:
- Discussion on the importance of data quality and consequences of quality lack. Introduction of relevant aspects in data preparation step: Missing data, outliers detection and treatment, derived variables, transformed variables, filtering, sampling, feature weighting, dimensionality reduction (feature selection and factorial methods), all of them critical to guarantee the validity of the analysis. Good practice guidelines will be provided. Also a general reference methodology is provided
6. Choosing the proper Data Mining method

Description:
- 6.1. The problem-oriented approach
- 6.2 Criteria determining the suitability of a Data Mining method
- 6.3 The Data Mining Methods Conceptual Map (DMMCM-map)

Related activities:
Designing the complete KDD process for your project and working plan

Specific objectives:
The course follows a problem-oriented Data Science approach, where the nature of the problem mainly determines the analysis process and non vice-versa. Factors determining a correct choice of data mining method in real cases are discussed. The DMMCM typology of methods is presented as a conceptual basis for selection.

7. Data Mining Step: Descriptive Methods

Description:
- 7.1. Descriptive Methods
 Clustering: partitioning methods, hierarchical, scalability. Hybrid methods, introduction of prior expert knowledge. Knowledge elicitation
- 7.2. Classes' characterization

Related activities:
Cluster your data

Specific objectives:
Methods to identify and characterize profiles are presented
8. Data Mining: Associative Methods

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
</table>
| 8.1. Association Rules mining
8.2 Factorial methods
8.3 Bayesian networks |

<table>
<thead>
<tr>
<th>Related activities:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use some associative method on your data</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specific objectives:</th>
</tr>
</thead>
<tbody>
<tr>
<td>This chapter is devoted to methods discovering relationships between variables of the dataset</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Learning time:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2h 30m</td>
</tr>
</tbody>
</table>

Theory classes: 2h 30m

9. Data Mining: Discriminant Methods

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
</table>
| 9.1 Decision trees,
9.2 Rule induction
9.3 Support vector machines
9.4 Discriminant analysis
9.5 Ensemble methods and bagging
9.6 Hybrid methods. |

<table>
<thead>
<tr>
<th>Related activities:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predict a qualitative variable by at least two discriminant methods</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specific objectives:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods to predict a class variable (or a qualitative variable). At least 3 of them will be presented</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Learning time:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2h 30m</td>
</tr>
</tbody>
</table>

Theory classes: 2h 30m
10. Data Mining: Predictive Methods

Description:
10.1 Regressión, statistical modelling in general.
10.2 Temporal methods
10.3 Artificial Neural Networks
10.4 Swarm Intelligence.

Related activities:
Predict (one or more) numerical variables

Specific objectives:
Methods to predict a numerical variable. At least 2 of them will be introduced

11. Spatio-temporal data mining

Description:
Spatio-temporal modelling

Related activities:
General review of project advances

Specific objectives:
Some tools to deal with spatio-temporal data will be introduced

12. Post-processing and validation

Description:
12.1 Post-processing tools
12.2 Model validation
12.3 Results validation

Related activities:
Validation of models in your project.

Specific objectives:
Post-processing tools and validation tools for both models and results adapted to different Data Mining methods.
13. Reporting and results communication

Learning time: 2h 30m
Theory classes: 2h 30m

Description:
13.1 Reporting, automatic reporting
13.2 Results communication

Related activities:
Review of reporting the project

Specific objectives:
Crucial to guarantee that the results of the Data Science process provide effective decision support to the end-user and the analysis have real impact on the target domain

Planning of activities

| Progress presentation of projects | Hours: 2h 30m
Theory classes: 2h 30m |
|-----------------------------------|--------------------------|
| **Description:** | Oral presentation of first part of project and discussion
Written deliverable |
| **Specific objectives:** | Milestone to synchronize all students with a suitable working plan
Communication and reporting skills are evaluated together with technical skills and organization of the working team |

| Final projects presentation | Hours: 2h 30m
Theory classes: 2h 30m |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Oral presentation and written deliverable of the complete project. General and individual discussion with the teacher</td>
</tr>
<tr>
<td>Specific objectives:</td>
<td>Evaluation of the technical, communication and reporting skills, as well as the organizational performance of the working team</td>
</tr>
</tbody>
</table>
A long-term project will be developed by groups, applying a complete data science process to real data, including the application of methods lectured in the course. The project is developed under teachers’ supervision.

An intermediate delivery (D1) will contribute to a better planning of the global work (D2). The final mark is assigned in the following way:

\[\text{NotaFinal} = 0.4D1 + 0.6D2 \]

where

\[D1 = 0.4 \times \text{quality of written document} + 0.3 \times \text{quality of oral presentation and discussion} + 0.2 \times \text{individual performance in laboratory sessions} \]

\[D2 = \alpha \times (0.4 \times \text{quality of written document} + 0.3 \times \text{quality of oral presentation and discussion} + 0.2 \times \text{individual performance in laboratory sessions}) \]

being \(\alpha \) a factor between 0.5 and 1.5 resulting from a cross-evaluation process done by the working team partners in D2 delivery.

AV2. Oral test to assess knowledge (PO).
AV3. Practical work developed individually or in groups along the course (TR). Includes the evaluation of results, reports, and oral presentation.
AV4. Attendance and participation in classes and laboratories (AP).
AV5. Quality and performance of team working (TG).

Bibliography