Course guides
820732 - EMAM - Energy and Environment

Unit in charge: Barcelona School of Industrial Engineering
Teaching unit: 713 - EQ - Department of Chemical Engineering.

Degree: ERASMUS MUNDUS MASTER'S DEGREE IN ENVIRONOMICAL PATHWAYS FOR SUSTAINABLE ENERGY SYSTEMS (Syllabus 2012). (Compulsory subject).
ERASMUS MUNDUS MASTER'S DEGREE IN ENVIRONOMICAL PATHWAYS FOR SUSTAINABLE ENERGY SYSTEMS (Syllabus 2013). (Compulsory subject).
MASTER'S DEGREE IN ENERGY ENGINEERING (Syllabus 2013). (Compulsory subject).

Academic year: 2020 ECTS Credits: 5.0 Languages: English

LECTURER

Coordinating lecturer: Valderrama Angel César A.
Others: Casas Pons Ignasi Valderrama Angel César A.

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
CEMT-3. Assess the economic, social and environmental impact of the production, use and management of energy, with a holistic view of the life cycle of the different systems, and recognise and value the most remarkable developments in the fields of energy efficiency and the rational use of energy.

Transversal:
CT5. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.

TEACHING METHODOLOGY

The course is divided into three types of sessions:
a) Theoretical classes
b) Problem-based learning usually by practical applications
c) The project-based learning in which students organized in groups; develop projects based on real situations.
LEARNING OBJECTIVES OF THE SUBJECT

The general objective of the course is to introduce students to the problems associated with energy management in our society and the consequences and effects on the environment in terms of pollution with special emphasis on air pollution. The course aims to identify the effects of energy production and to introduce principles and tools, especially those aimed at preventing and minimizing gas emissions. Familiarize students with the tools to predict the behaviour of contaminants using basic models of transport and dispersion and to determine the air quality at a specific point. Introducing the basic knowledge that allows selecting the most appropriate technology for a treatment according to the type of pollutant, environment, and relevant environmental laws and regulations.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>80,0</td>
<td>64.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>30,0</td>
<td>24.00</td>
</tr>
<tr>
<td>Guided activities</td>
<td>15,0</td>
<td>12.00</td>
</tr>
</tbody>
</table>

Total learning time: 125 h

CONTENTS

**Sustainability, Energy and Environment**

**Description:**
Sustainable development
Sustainable use of resources
Energy efficiency

**Specific objectives:**
At the end of this topic, students will be able to:
Identify the elements of the sustainable development and the social, economic and environmental challenges related to the energy management
Distinguish between the concepts of the use of energy resources and energy efficiency in terms of sustainable development

**Full-or-part-time:** 10h
Theory classes: 4h
Guided activities: 2h
Self study: 4h
Emission inventories and Carbon Footprint

**Description:**
Emissions inventory.
European regulation of air emissions inventories. International regulations.
General methodology. Specific methodologies for different types of sources
Carbon Footprint Methodology

**Specific objectives:**
At the end of this topic, students will be able to:
Identify standards and methodologies for emissions inventories
Develop a basic inventory from an industrial process, from a natural or urban system.

**Full-or-part-time:** 14h
Theory classes: 2h
Practical classes: 2h
Guided activities: 4h
Self study: 6h

Air Pollution

**Description:**
Air pollutants resulting from energy generation processes
Primary and secondary pollutants
Overview of environmental policy and legislation relevant to air pollution

**Specific objectives:**
At the end of this topic, students will be able to:
Identify the most important constituents of the atmosphere and their importance for living organisms, climate, etc.
Classify the most representative pollutants and their emission sources arising from energy production
Identify the types of pollutants and distinguish the maximum permitted levels of emissions and air quality legislation

**Full-or-part-time:** 13h
Theory classes: 2h
Practical classes: 3h
Guided activities: 4h
Self study: 4h
Atmospheric dispersion

Description:
Emission, transport and receptor point concepts
Meteorological factors influencing the dispersion.
Point and linear sources of pollution.
Characteristics of a contaminant plume.
Inversion.
Overview of dispersion models and reaction of pollutants in the atmosphere
The Gaussian dispersion model

Specific objectives:
At the end of this topic, students will be able to:
Identify concepts, dispersion, transport and the effects of meteorological parameters on the dilution of pollutants
Identify the different levels of complexity in modelling the dispersion of pollutants
Apply mathematical representations (Gaussian model) to describe the process of dispersion of pollutants under different situations (Inversion, linear source pollution, etc.)
Interpret the results obtained from the point of view of air pollution reduction and also of air quality control

Full-or-part-time: 20h
Theory classes: 4h
Practical classes: 2h
Guided activities: 4h
Self study: 10h

Effects of air pollution

Description:
Global effects: ozone layer depletion
Local and regional effects: acid rain, photochemical smog,
Climate change. Global energy balance and radiative forcing, International agreements, commitments within the EU.
Prevention measures and international emissions trading system

Specific objectives:
At the end of this topic, students will be able to:
Distinguish between local and global effects of air pollution
Recognize the implications of air pollution on climate change and identify the principles that determine the emissions trading

Full-or-part-time: 14h
Theory classes: 4h
Practical classes: 2h
Guided activities: 4h
Self study: 4h
## Treatment and control systems for particles and dust

**Description:**
- Treatment types
- Dry treatments
- Wet treatments
- Filtration treatments

**Specific objectives:**
At the end of this topic, students will be able to:
- Classify technologies according to process parameters (flowrate, particle size distribution)
- Calculate treatment system efficiencies from design parameters and working conditions.

**Full-or-part-time:** 5h
- Theory classes: 1h
- Practical classes: 1h
- Guided activities: 1h
- Self study: 2h

## Gas cleaning systems

**Description:**
- Prevention systems: low emission burners, chemical reduction methods
- Absorption, adsorption, condensation, biofiltration.
- Thermal oxidation.
- Catalytic and non-catalytic combustion
- CO2 capture and sequestration technologies

**Specific objectives:**
At the end of this topic, students will be able to:
- Distinguish among different treatment and cleaning technologies, and to identify the most suitable technology for each pollutant in a given regulation environment.
- Identify the design parameters for each technology, and to apply them to real air pollution cases.

**Full-or-part-time:** 8h
- Theory classes: 2h
- Guided activities: 2h
- Self study: 4h

## GRADING SYSTEM

Written test control of knowledge: 50%
Work done individually or in groups during the course: 25%
Attendance and participation in practical activities: 15%
Quality and performance of group work: 10%
BIBLIOGRAPHY

Basic:

Complementary: