
25

He wanted to turn the mine into a tourist attraction where peo-
ple would be taken on tours through the mine and given lectu-
res on how native copper was mined (this was the only place in 
the world where native copper existed). He wanted me to help 
jumpstart his new tourist business. He had not gone past fourth 
grade, and he knew he did not know enough basics (like math) 
to do everything himself. He asked me to learn as much as I 
could about copper, become the mine—s first tour guide, and hire 
and train people to work for me as guides. Our tourist business 
went from giving the tour to a couple of people a day to thou-
sands of people a day. Not only was I in charge of the guides, 
I was also responsible for almost everything else connected to 
the mine, including starting and managing a gift shop, being 
in charge of the financials and running the business at large. 
During this time I learned quickly that if you made mistakes 
you did not allow yourself (or others) to ever make them again! 
After such an experience, when it later became time to become 
familiar with and responsible for doing other completely new 
and unfamiliar kinds of things without any prior background 
or experience, like designing and developing software, it was a 
non-issue; or so I thought at the time!

I realize also how fortunate I was to have had so many amazing 
experiences during the earlier days of software, when we were 
deep in the trenches, to be in a field before it became a field, 
and to be around those from whom I learned so much. In 1959, 
Edward N. Lorenz, a professor at MIT, introduced me to compu-

A Preventative Paradigm for Systems and Software

My background in software has been anything but traditional. 
It began before the discipline of designing and developing soft-
ware was a field. There were no courses available to understand 
what it was we were doing or how we should be doing it. Any 
prior √educationƒ, if you will, was a combination of learning 
from seemingly unrelated life and work experiences before and 
during college, majoring in math and minoring in philosophy 
in college, and working in the trenches for years on several and 
varied software applications that required doing things that had 
never been done before while at the same time coming up with 
solutions and associated rules and techniques for doing such 
things in the future. On hindsight, I think it all began when 
I was very young. I remember, as a child, the many philoso-
phical √what if?ƒ, √why?ƒ and √why not?ƒ talks I had with my 
father and grandfather. Both taught me to observe and question 
everything until answers made sense; and I look back at how 
important these talks were for what was to become important for 
my work in the future.

I was fortunate to have had unique challenges, responsibilities 
and experiences in the workplace, even before high school. All 
because I needed to raise money for college. One experience, in 
particular, stands out. Before I was 15, I was hired by the owner 
of an abandoned copper mine, in the Upper Peninsula of Michi-
gan, that had been converted into a storage place for bananas. 
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ters; I developed weather prediction applications in hexadecimal 
and binary on the LGP-30. Known for his ground-breaking work 
in chaos theory, he was a most humble human being. His love 
for software experimentation was contagious, and I caught the 
√bugƒ. Towards this end, understanding the relationships bet-
ween the hardware and the software was critical, because it was 
important on this project to develop software that was perfor-
mance-optimized. We viewed errors, then, simply as a nuisance, 
especially since debug sessions took forever.

Another early project was SAGE (Semi-Automatic Ground En-
vironment), for which I developed applications in assembly 
language on the first AN/FSQ-7 (the XD-1), at MIT—s Lincoln 
Labs, to look for enemy airplanes. The machine was huge, the 
largest computer system ever built. It was especially important 
not to make an error, because if you did, the computer would 
tell on you with siren-like and fog horn-like sounds that everyo-
ne within a large warehouse-like building could hear, and flas-
hing lights that everyone could see. Operators and programmers 
would come running to find out whose program had crashed. 
One time, in the middle of the night, I received a frantic call 
at home from one of the computer operators to tell me that so-
mething terrible was wrong with my program Õit no longer 
sounded like a seashore. It then became clear that we had found 
a new way to debug, using sound!

Just as it was with the LGP-30, debugging on the AN/FSQ-7 on 
the SAGE project was time consuming, and tools did not exist 
for finding an error and that which made it happen. Software 
errors were unwelcome mostly because they were considered to 
be a nuisance (or an embarrassment). During this project, as 
with the LGP-30 project, I became fascinated with errors Õloo-
king for ways to understand what made a particular error(s) or 
class of errors happen and working on ways to prevent it from 
happening in the future.

Back then, you were on your own, and knowledge (or lack the-
reof) was passed down from person to person. A manager hi-

red you if you √knewƒ the commands in his computer—s native 
language. Like √knowingƒ a set of English words would mean 
you could write a novel. I was mystified by this attitude. If a 
system crashed, software was always the one to blame. Terms 
were undefined, leading to errors, misunderstandings and dra-
ma. Terms like √softwareƒ, √designƒ, √errorƒ, and √computer 
systemsƒ meant different things to different people. In fact, 
one of the managers I worked for at first thought the term 
√softwareƒ meant √soft clothingƒ. Also, at the time, the world
of software was tribal. Software √typesƒ often could mix things 
up if and when other software areas were unfamiliar to them 
(e.g., mixing up the operating system functionality with the tar-
get system functionality). Although some things were quite dif-
ferent then, the life cycle process itself by default was not unlike 
today—s traditional life cycle (e.g., the waterfall, spiral, and agile 
models), going from requirements to coding to endless testing 
and maintenance.

Apollo On-Board Flight Software

Sage definitely came with drama, especially having to do with 
errors; but this was only the beginning of what would come next: 
the Apollo on-board flight software project at MIT, under con-
tract to NASA. The challenge was that the software was man-
rated, meaning astronauts— lives were at stake. It had to WORK 
Õthe first time. Not only did the software itself have to be ultra-
reliable, but it would need to be able to detect an error and reco-
ver from it in real time. Learning was by √doingƒ and √beingƒ. 
Hardware engineers came with formal rules for designing and 
building hardware; for us, the √software engineersƒ, this was 
not the case. Problems had to be solved that had never been sol-
ved before. At times, we made it up. Most developers were fear-
less and young, yet dedication and commitment were a given. 
Managers (mostly from hardware backgrounds) for whom soft-
ware was a mystery gave us total freedom and trust. There was 
no time to be a beginner. I began by building software for the 
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unmanned missions, concentrating on the areas of the systems 
software, areas used by and impacting all of the flight software. 
The systems software included the software for error detection 
and recovery. The software system for the unmanned missions 
was synchronous.

Manned missions were next. I was now in charge of the team 
that developed the on-board flight software for the manned mis-
sions and the on-board flight software itself; but I made sure 
to keep my technical hand more often than not in the systems 
software area. The software was more complex for the manned 
missions. Our environment was asynchronous (a multi-pro-
gramming environment), where higher priority jobs interrupted 
lower priority jobs based on every job—s priority relative to every 
other job—s priority. It was up to us, the developers, to manually 
assign a unique priority to every process in the flight software to 
ensure that all events would take place in the correct order and 
at the right time. I was always searching for new ways to prepa-
re for and recover from the unexpected: going from program-
specific to system-wide protection. I began to think about all of 
the possible √what-ifsƒ and worked on ways to address them. For 
example, I asked, what if there was an emergency during flight 
and we wanted to warn the astronauts? I thought there had to be 
a way to solve this. There was! 

Each mission was exciting, but Apollo 11 was special. We had 
never landed on the moon before. Everything was going per-
fectly until something totally unexpected happened. Just as the 
astronauts were about to land on the moon, the flight computer 
became overtaxed! The software—s Priority Displays (AKA Dis-
play Interface Routines) of 1201 and 1202 alarms interrupted 
the astronauts— normal mission displays to warn them there was 
an emergency, allowing NASA—s Mission Control to understand 
what was happening and alerting the astronauts to place the 
rendezvous radar switch back in the right position. It quickly 
became clear that the software was not only informing everyone 
there was a hardware-related problem, but the software was also 

compensating for it. The Priority Displays gave the astronauts a 
go/no-go decision (to land or not to land). With only minutes to 
spare, the decision was made to go for the landing. The rest is 
history. The Apollo 11—s crew became the first humans to walk 
on the moon, and our software became the first software to run 
on the moon.[1, 2, 3]

The software—s systems-software error detection and recovery me-
chanisms had taken control. System-wide √kill and recomputeƒ 
from a √safe placeƒ snapshot-rollback restarts were triggered by 
the overloading, keeping only the highest priority jobs. During 
this moment, I remembered the most exciting and memorable 
discovery related to it. That was when the realization came to me 
that the steps taken earlier within the multi-programming en-
vironment could become the basis for solutions within a multi-
processing environment. That is, even though there was only 
one process executing at one time within a multi-programming 
environment, other processes were waiting in parallel to that 
process. With this as a backdrop, the Priority Displays were able 
to be created, changing the interface between the flight software 
and the astronauts from synchronous to asynchronous (the 
software and astronauts becoming parallel processes within a 
system of systems). This would not have been possible without 
an integrated system of systems (and teams) approach and con-
tributions made by other groups to support this becoming a 
reality. The hardware team at MIT changed their hardware and 
the mission planning team in Houston changed their astronaut 
procedures, both working closely with us to accommodate the 
Priority Displays for both the Command Module (CM) and the 
Lunar Module (LM), for any kind of emergency and throughout 
any mission. Mission Control was well prepared to know what to 
do if the Priority Displays interrupted the astronauts.

I thought of the years of preparing for this day and how fortuna-
te I was to work with and share this experience with the many 
talented and dedicated people who made this possible. Coming 
up with discoveries, new ideas and solutions was an adventure. 



From my own perspective, the software experience itself (desig-
ning it, developing it, evolving it, watching it perform and lear-
ning from it for future systems) was at least as exciting as the 
events surrounding the mission.

As developers, we had been given the opportunity of a lifetime: 
to make every kind of error humanly possible, each holding an-
swers to questions we had not thought of asking. On hindsight, 
a blessing in disguise. The task at hand was to develop the CM 
and the LM software. This included the systems-software that 
resided within both the CM and the LM and was shared between 
them, and the structure of the software (√glueƒ) that defined the 
relationships between, among and within mission phases. Up-
dates were continuously submitted from hundreds of people (in-
cluding √guestsƒ) over time and the many releases for each and 
every mission (where the software for one mission was being 
worked on concurrently with the software for other missions). 
We had to make sure that everything would play together; that 
the software parts would successfully interface to and work to-
gether with each other as well as with other systems (including 
the hardware, peopleware and missionware). 

We were handicapped by the hardware—s time and space constra-
ints, giving software √expertsƒ the license to be creative. √Creativeƒ 
code (i.e., tricky programming) was admired more than the num-
ber of lines of code a person wrote. Requirements were √thrown 
over the wallƒ by √non-software expertsƒ who assumed that all 
the software programs would somehow √magicallyƒ interface to-
gether. Fortunately, this was not the case. For, if it had been, we 
would never have learned what was to come next. Further, be-
cause of the computer—s constraints, data storage locations were 
shared between, among and within mission phases; and becau-
se of the multi programming environment, responsibilities and 
data storage locations were also shared among many programs 
continuously interrupting lower priority programs based on time 
and priority during each and every mission phase. This included 
both synchronous and asynchronous man-in-the-loop multi-pro-

cessing within a system of systems. Although there were more 
than enough opportunities to make errors, there were now the op-
portunities to come up with solutions to prevent them. √Software 
engineeringƒ rules evolved with each relevant discovery, while top 
management rules from NASA went from complete freedom to 
overkill. Even though there was no lack of opportunity to make an 
error and just about any kind of error possible, no on-board flight soft-
ware errors were ever known to occur during flight.

Having been through these experiences, one could not help but 
do something about learning from them. We asked, √What can 
we do better for future systems? What should we keep doing 
because we are doing it right?ƒ With initial funding from NASA 
and the DoD, we performed an empirical study of the Apollo 
effort. Our analysis took on multiple dimensions, not just for 
space missions but for systems in general. Lessons learned from 
this effort (and their impact) continue today: always ask "what 
if?" and always expect the unexpected. We learned that systems 
are asynchronous, distributed and event-driven in nature, and 
that this should be reflected in the language to define them and 
the tools to build them Õcharacterizing their natural behavior 
in terms of real-time execution semantics. Having done so, there 
is no longer a need to explicitly define schedules of when events 
occur. By describing interactions between objects, the schedule 
of events is inherently defined. We also learned that the life cy-
cle of a target system is a system with its own life cycle and that 
every system is inherently a system of systems.

Most interesting of all were the lessons we learned from the 
errors found during pre-flight testing. They were full of surpri-
ses. They told us what to do and where to go. After categorizing 
the errors, we concentrated our efforts on analyzing three cate-
gories of errors: interface errors (data, timing and priority con-
flicts), which were 75% of all the errors found, errors found by 
manual means with the Augekugel (√eyeballingƒ) or √scanning-
listingsƒ methods, and errors previously existing on earlier mis-
sions, which were usually the most subtle and hardest errors to 
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find.[4] Our analysis resulted in a theory based on lessons lear-
ned from Apollo and later projects. From its axioms, we derived 
a set of allowable patterns for defining a system. This led to a 
universal systems language (USL) together with its automation 
and preventative development paradigm, development before 
the fact (DBTF).[2,4,5,6,7,8,9]

It became clear one day that systems defined with the USL beha-
ved differently than those defined with traditional languages. Of 
greatest interest was the realization that the root problem with tra-
ditional systems engineering and software development languages 
and their environments is that they support users in √fixing wrong 
things upƒ (√after the factƒ) rather than in doing things in the right 
way in the first place (√before the factƒ). In contrast, with a preven-
tative paradigm, instead of looking for more ways to test for errors, 
and continuing to test for errors late into the life cycle, the majo-
rity of errors, including all interface errors, are not allowed into a 
system in the first place, just by the way it is defined. Testing for 
non-existent errors becomes an obsolete endeavor.

We continue to discover new properties in systems defined with 
the USL. Each property √comes along for the rideƒ throughout a 
system—s own development; the derivatives of the system—s de-
finition (its software being one of them) inherit the properties 
of the definition from which they are derived; integration from 
systems to software is seamless; reuse is inherent or derivable; 
a system defined with this language has properties in its defi-
nition that inherently support its own development √before the 
factƒ; and[2] each of its systems has √built-inƒ reliability and 
√built-inƒ productivity throughout its life cycle. In contrast to the
traditional paradigm with its √test to deathƒ philosophy, with the 
preventative paradigm the more reliable the system, the higher 
the productivity in building it, minimizing the need for most tes-
ting. Much of the design and all of the code is automatically ge-
nerated by the USL—s automation, inheriting all of the properties 
of the definition from which it came. The developer doesn—t ever 
need to manually code or manually change the code; only the 

changed part of the system is regenerated and integrated with 
the rest of the application, automatically. 

We learned that, because the USL is syntax-, implementation-, 
and architecture-independent, its systems can be developed for 
diverse architectures, and that the syntax of other languages can 
be mapped to the underlying semantics of the USL.[7] Unlike a 
formal language that is mathematically based but limited in sco-
pe from a practical standpoint (e.g., kind or size of system), the 
USL extends traditional mathematics with a unique concept of 
control, enabling it to support the definition of any kind or size 
of system. With this paradigm, the language also provides input 
to and serves as the basis for its automation to inherit and pass 
on the definition—s properties of control for the system—s own 
development process. The USL—s automation, a large system 
(millions of lines of code) in its own right, is completely defined 
with and generates itself. 

It is not magic. These things are possible because of the USL—s 
mathematical foundation. Not only does it take its roots from 
Apollo and later systems, it also takes roots from other formal 
methods, formal linguistics, and object technologies. Evolved 
over several decades, it has always stood its own in several diffe-
rent kinds of environments including academic[6,10,11], gover-
nment agencies[12], commercial[8] and other environments.[13] 
Used in research and √trail blazerƒ organizations, it has been 
positioned for more widespread use. A radical departure from 
the traditional, it redefines what is possible. New to the world 
at large, it would be natural to make assumptions about what is 
possible and impossible based on its superficial resemblance to 
other languages Õlike traditional object-oriented languages. We 
have learned that it helps to suspend any and all preconceived 
notions when one is first introduced to this language, because 
it is a world unto itself Õa different way to think about systems.

When today—s developers of middle to large systems are asked to 
list their most pressing issues, this is what they say: integration 
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is too late, if at all; traceability, flexibility and evolvability are lac-
king; reuse is ad hoc and error-prone; software is unreliable even 
with extensive testing; software costs too much and it takes too 
long to make. Clearly, the last issues on the list, which have to do 
with reliability and productivity, become solved if most of, if not 
all of, the other issues on the list are solved. Most people say it is 
impossible to do much about addressing these issues Õat least 
in the foreseeable futureÕ and so software by its very nature is 
destined to have these kinds of problems. I ask, √Why is it that 
today—s developers list the same issues as they listed 50 years ago 
when the field was brand new, and why is it that they give the 
same reason they gave 50 years ago?ƒ 

It is true that many of the pressing software issues that existed 
in the earlier days still exist today. What we have learned, howe-
ver, from our own work, is that the reason they gave both then 
and now is not the one I would give. That is, I believe that the 
reason for the issues related to developing software is not the 
nature of software, per se, but it is instead largely because of the 
traditional paradigm used to build it Õa paradigm that has been 
around since the beginning and continues in force to this day. 
Many of the well-known problems that exist with the traditional 
paradigm need no longer exist with a preventative paradigm. 
Moreover, what works best for developing ultra-reliable systems 
just happens to work best for systems in general, no matter the 
application. It has been shown that many aspects of the pressing 
issues (both 50 years ago and today) can be addressed; if not, ulti-
mately eliminated altogether, with the use of the preventative pa-
radigm.[2,4,7,8,9,10,11,12,13] The preventative paradigm with its 
language and its automation did not disappoint when put to test. 
In fact, the larger and the more complex the system, the better 
the results. What is able to be done with what has been learned, 
however, depends on how ready and how open developers are to 
a change in how we build software. Given the kinds of systems 
we need to build for today and tomorrow, I believe that change 
has to, and will begin to, happen, sooner rather than later. 
For whatever success I may have experienced, much of it was 

because I was in the right place at the right time, with the right 
opportunities and the right people. In some ways, I had the be-
nefit of beginning with no preconceived notions, since it was 
necessary to go into areas that had never been gone into before. 
Many of the things we were doing had not been done before 
and for that I feel very lucky. Much of the credit goes not only to 
those I have learned so much from, but also to the errors I have 
had the opportunity of having had some responsibility in their 
making, without which we would not have been able to learn the 
things we did. Some with great drama and fanfare, and often 
with a large enough audience to not want such a thing to ever 
happen again! 

The errors showed us how to exist without them. They led to 
a language with a preventative paradigm where a system—s de-
finition inherently replaces much of what used to be aspects of 
the system—s own life cycle, and which now becomes no longer 
needed; and it serves as the input for the language—s automation 
of what used to be manual processes in the system—s own life cy-
cle, and therefore results in many parts of the system—s own life 
cycle becoming no longer needed. In essence, trail blazing and 
taking risks in unknown territory led us among other things to 
the errors; the errors led us to a paradigm that leads √before the 
factƒ to the future. Educating people how to think, do and be in 

terms of the paradigm becomes the next real challenge. 
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