The objective of this course is to introduce students in the use of ROS as a powerful robotics tool. Specifically a familiarization with the middleware concept and the software structure of a robot. There will be a special emphasis on sensing and control of robots using ROS, both in simulation and in real environments.

Learning Outcomes:
- Learn how to setup a Linux O.S. environment to work with ROS.
- Understand the ROS communications architecture.
- Use ROS in the different process layers, from sensing to control or actuation.
- Implement simple ROS projects with both simulation and real robots.

Mandatory contents:
- Install and setup ROS in a native O.S. Linux (Ubuntu).
- Know and understand the internal procedures of ROS and its modules functionalities (master, nodes, and so on).
- Identify and use the ROS tools and formats related to the internal communication between nodes (topics, actions, services, ...).
- Use ROS visualization and debugging tools.
- Design and program C++ algorithms using ROS as a middleware.
240AR060 - Introduction to Ros

Use debugging tools to verify the compilation and the algorithm functionalities. Configure and use a simulation environment with the designed algorithms. Managing acquisition, analysis and display of data obtained from different sensors using ROS. Manage and send control commands to a robot using ROS, both using simulation and real settings.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 112h 30m</th>
<th>Hours large group: 27h</th>
<th>24.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours small group: 13h 30m</td>
<td>12.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 72h</td>
<td>64.00%</td>
</tr>
</tbody>
</table>
240AR060 - Introduction to Ros

Content

<table>
<thead>
<tr>
<th>Section</th>
<th>Learning time: 5h</th>
<th>Practical classes: 3h</th>
<th>Self study : 2h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ROS Basic concepts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1. Introduction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2. ROS core components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3. Applications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4. Install instructions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5. ROS command-line tools</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Development Tools</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1. Programming</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2. Building executables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3. The ROS build system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4. Good practices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5. Version control using GIT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Communications using topics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1. An example: The package agitr_chapter3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2. A publisher program</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3. A subscriber program</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4. Standard and common messages</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description:

1. **Introduction**
2. **ROS core components**
3. **Applications**
4. **Install instructions**
5. **ROS command-line tools**
6. **Programming**
7. **Building executables**
8. **The ROS build system**
9. **Good practices**
10. **Version control using GIT**
11. **An example: The package agitr_chapter3**
12. **A publisher program**
13. **A subscriber program**
14. **Standard and common messages**
240AR060 - Introduction to Ros

4. The launch utility

<table>
<thead>
<tr>
<th>Learning time: 5h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical classes: 3h</td>
</tr>
<tr>
<td>Self study: 2h</td>
</tr>
</tbody>
</table>

Description:
4.1. Using launch files
4.2. Understanding launch files
4.3. Graph resource names
4.4. Managing names in launch files
4.5. ROS parameters

5. Communications using services

<table>
<thead>
<tr>
<th>Learning time: 5h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical classes: 3h</td>
</tr>
<tr>
<td>Self study: 2h</td>
</tr>
</tbody>
</table>

Description:
5.1. Services
5.2. The package agitr_chapter8
5.3. A client program
5.4. A server program
5.5. Standard services
5.6. Defining non-standard services

6. Tools

<table>
<thead>
<tr>
<th>Learning time: 5h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical classes: 3h</td>
</tr>
<tr>
<td>Self study: 2h</td>
</tr>
</tbody>
</table>

Description:
6.1. The tf tool
6.2. Robot Modeling and visualization tools
6.3. The rosbag Tool
6.4. The rqt tool
7. Communications using actions

Description:
- 7.1. Working with ROS actionlib
- 7.2. Building and running a simple example
- 7.3. The ROS action server
- 7.4. The ROS action client
- 7.5. The pan-tilt example

Learning time: 5h
Practical classes: 3h
Self study : 2h

8. Simulation - basic issues

Description:
- 8.1. Gazebo basics
- 8.2. Integration to ROS
- 8.3. Configuring launch files
- 8.4. ROS-aware Gazebo plugins
- 8.5. Tunning URDF models

Learning time: 5h
Practical classes: 3h
Self study : 2h

9. Simulation - sensors

Description:
- 9.1. Available ROS plugins
- 9.2. The camera ROS plugin
- 9.3. The depth camera ROS plugin
- 9.4. ROS plugins for some other sensors

Learning time: 5h
Practical classes: 3h
Self study : 2h
10. Robot control

Description:
10.1. ros_control overview
10.2. Controllers
10.3. Hardware Abstraction Layer
10.4. Using ros_control in Gazebo

Learning time: 5h
- Practical classes: 3h
- Self study: 2h

Case study

Description:
Definition of the solution
Sensing module
Planning module
Action module

Learning time: 15h
- Practical classes: 9h
- Self study: 6h

Qualification system

The acquired competences and capabilities will be assessed on the basis of three qualification grades: exercises (20%), deliverable (20%) and final project (60%).
Re-evaluation: new final project (60%).
Bibliography

Basic:

Others resources:

ROS wiki page: http://wiki.ros.org/
ROS tutorials: http://wiki.ros.org/ROS/Tutorials/
Gazebo tutorials: http://gazebosim.org/tutorials/
Catkin tutorials: http://jbohren.com/tutorials/
ROS cheatsheet: https://github.com/ros/cheatsheet/releases/download/0.0.1/ROScheatsheet_catkin.pdf /

Hyperlink

Introduction to ROS: online tutorials

https://sir.upc.edu/projects/rostutorials/index