The objective of this course is to introduce students in the use of ROS as a powerful robotics tool. Specifically, a familiarization with the middleware concept and the software structure of a robot. There will be a special emphasis on sensing and control of robots using ROS, both in simulation and in real environments.

Learning Outcomes:
Learn how to setup a Linux O.S. environment to work with ROS.
Understand the ROS communications architecture.
Use ROS in the different process layers, from sensing to control or actuation.
Implement simple ROS projects with both simulation and real robots.

Mandatory contents:
Install and setup ROS in a native O.S. Linux (Ubuntu).
Know and understand the internal procedures of ROS and its modules functionalities (master, nodes, and so on).
Identify and use the ROS tools and formats related to the internal communication between nodes (topics, actions, services, ...).
Use ROS visualization and debugging tools.
Design and program C++ algorithms using ROS as a middleware.
Use debugging tools to verify the compilation and the algorithm functionalities.
Configure and use a simulation environment with the designed algorithms.
Managing acquisition, analysis and display of data obtained from different sensors using ROS.
Manage and send control commands to a robot using ROS, both using simulation and real settings.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 112h 30m</th>
<th>Hours large group:</th>
<th>27h</th>
<th>24.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours small group:</td>
<td>13h 30m</td>
<td>12.00%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>72h</td>
<td>64.00%</td>
</tr>
</tbody>
</table>
Content

1. ROS Basic concepts

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Introduction</td>
</tr>
<tr>
<td>1.2. ROS core components</td>
</tr>
<tr>
<td>1.3. Applications</td>
</tr>
<tr>
<td>1.4. Install instructions</td>
</tr>
<tr>
<td>1.5. ROS command-line tools</td>
</tr>
</tbody>
</table>

Learning time: 5h
Practical classes: 3h
Self study: 2h

2. Development Tools

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. Programming</td>
</tr>
<tr>
<td>2.2. Building executables</td>
</tr>
<tr>
<td>2.3. The ROS build system</td>
</tr>
<tr>
<td>2.4. Good practices</td>
</tr>
<tr>
<td>2.5. Version control using GIT</td>
</tr>
</tbody>
</table>

Learning time: 5h
Practical classes: 3h
Self study: 2h

3. Communications using topics

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1. An example: The package agitr_chapter3</td>
</tr>
<tr>
<td>3.2. A publisher program</td>
</tr>
<tr>
<td>3.3. A subscriber program</td>
</tr>
<tr>
<td>3.4. Standard and common messages</td>
</tr>
</tbody>
</table>

Learning time: 5h
Practical classes: 3h
Self study: 2h
4. The launch utility

Description:
- 4.1. Using launch files
- 4.2. Understanding launch files
- 4.3. Graph resource names
- 4.4. Managing names in launch files
- 4.5. ROS parameters

Learning time: 5h
Practical classes: 3h
Self study: 2h

5. Communications using services

Description:
- 5.1. Services
- 5.2. The package agitr_chapter8
- 5.3. A client program
- 5.4. A server program
- 5.5. Standard services
- 5.6. Defining non-standard services

Learning time: 5h
Practical classes: 3h
Self study: 2h

6. Tools

Description:
- 6.1. The tf tool
- 6.2. Robot Modeling and visualization tools
- 6.3. The rosbag Tool
- 6.4. The rqt tool

Learning time: 5h
Practical classes: 3h
Self study: 2h
7. Communications using actions

Description:
- 7.1. Working with ROS actionlib
- 7.2. Building and running a simple example
- 7.3. The ROS action server
- 7.4. The ROS action client
- 7.5. The pan-tilt example

Learning time:
- Practical classes: 3h
- Self study: 2h

8. Simulation - basic issues

Description:
- 8.1. Gazebo basics
- 8.2. Integration to ROS
- 8.3. Configuring launch files
- 8.4. ROS-aware Gazebo plugins
- 8.5. Tuning URDF models

Learning time:
- Practical classes: 3h
- Self study: 2h

9. Simulation - sensors

Description:
- 9.1. Available ROS plugins
- 9.2. The camera ROS plugin
- 9.3. The depth camera ROS plugin
- 9.4. ROS plugins for some other sensors

Learning time:
- Practical classes: 3h
- Self study: 2h
The acquired competences and capabilities will be assessed on the basis of three qualification grades: exercises (20%), deliverable (20%) and final project (60%).

Re-evaluation: new final project (60%).

COVID'19: No changes on the assessment formula will be introduced in the academic year 2019-2020 (Q2), since all the scheduled activities can be regularly done. However, the oral presentation of the final work (scheduled to be done in the robotics lab on June 26, 2020) will be done virtually using Google Meet.

10. Robot control

Description:
- 10.1. ros_control overview
- 10.2. Controllers
- 10.3. Hardware Abstraction Layer
- 10.4. Using ros_control in Gazebo

Learning time: 5h
- Practical classes: 3h
- Self study: 2h

Case study

Description:
- Definition of the solution
- Sensing module
- Planning module
- Action module

Learning time: 15h
- Practical classes: 9h
- Self study: 6h
240AR060 - Introduction to Ros

Bibliography

Basic:

Others resources:

ROS wiki page: http://wiki.ros.org/
ROS tutorials: http://wiki.ros.org/ROS/Tutorials/
Gazebo tutorials: http://gazebosim.org/tutorials/
Catkin tutorials: http://jbohren.com/tutorials/
ROS cheatsheet: https://github.com/ros/cheatsheet/releases/download/0.0.1/ROScheatsheet_catkin.pdf /

Hyperlink

Introduction to ROS: online tutorials

https://sir.upc.edu/projects/rostutorials/index