240EM115 - Surface Engineering

Coordination unit: 295 - EEBE - Barcelona East School of Engineering

Teaching unit: 702 - CMEM - Department of Materials Science and Metallurgy

Academic year: 2018

Degree:
- MASTER'S DEGREE IN MATERIALS SCIENCE AND ENGINEERING (Syllabus 2014).
- ERASMUS MUNDUS MASTER'S DEGREE IN ADVANCED MATERIALS SCIENCE AND ENGINEERING (Syllabus 2009).
- ERASMUS MUNDUS MASTER'S DEGREE IN ADVANCED MATERIALS SCIENCE AND ENGINEERING (Syllabus 2014).
- ERASMUS MUNDUS MASTER'S DEGREE IN ADVANCED MATERIALS SCIENCE AND ENGINEERING (Syllabus 2014).
- MASTER'S DEGREE IN MATERIALS SCIENCE AND ENGINEERING (Syllabus 2014).

ECTS credits: 3

Teaching languages: Catalan, Spanish

Teaching staff

Coordinator: JESSICA CALVO MUÑOZ

Others: Anna Gironès Molera

Opening hours

Timetable: Fridays, from 17:00 to 18:00h

Prior skills

Basic physical metallurgy knowledge

Requirements

Basic physical metallurgy knowledge

Degree competences to which the subject contributes

Specific:
- CEMCEM-02. (ENG) Dissenyar i desenvolupar productes, processos, sistemes i serveis, així com l'optimització d'altres ja desenvolupats, atenent a la selecció de materials per a aplicacions específiques

Transversal:
- 06 URI N2. EFFECTIVE USE OF INFORMATION RESOURCES - Level 2. Designing and executing a good strategy for advanced searches using specialized information resources, once the various parts of an academic document have been identified and bibliographical references provided. Choosing suitable information based on its relevance and quality.

Teaching methodology

This subject consists of a main part dedicated to theoretical lectures. It also has a part related to a continuous evaluation where the students must work on different subjects of their interest related to the course (for example: elaboration of an essay, oral presentations, discussions, reading and discussion of scientific articles, etc)

Learning objectives of the subject
Surface technology is one of the fields on materials transformations which has experienced a fast evolution. The objective of this subject is allowing students to get familiarized with classical surface treatments, as well as with the modern ones, paying special attention to industrial applications.

Study load

<table>
<thead>
<tr>
<th>Study load</th>
<th>Total learning time: 75h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours large group:</td>
</tr>
<tr>
<td></td>
<td>18h</td>
</tr>
<tr>
<td></td>
<td>24.00%</td>
</tr>
<tr>
<td></td>
<td>Hours medium group:</td>
</tr>
<tr>
<td></td>
<td>0h</td>
</tr>
<tr>
<td></td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group:</td>
</tr>
<tr>
<td></td>
<td>9h</td>
</tr>
<tr>
<td></td>
<td>12.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities:</td>
</tr>
<tr>
<td></td>
<td>0h</td>
</tr>
<tr>
<td></td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
</tr>
<tr>
<td></td>
<td>48h</td>
</tr>
<tr>
<td></td>
<td>64.00%</td>
</tr>
</tbody>
</table>
Surface Engineering

<table>
<thead>
<tr>
<th>Content</th>
<th>Learning time</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface engineering introduction</td>
<td>2h</td>
<td>Description: Main damage mechanisms on industrial samples during service: fatigue, wear and corrosion. Benefits of surface engineering in order to avoid or delay the development of the damage mechanisms.</td>
</tr>
</tbody>
</table>
| **Surface modification treatments** | 4h | **Description:** Surface modification by Physical and Chemical treatments:
(a) plastic deformation: blasting and shot peening
(b) thermal surface treatments: flame hardening and induction hardening
(c) thermochemical surface treatments: carburizing, nitriding, carbonitriding, nitrocarburizing, sulfinization and boronizing. |
| **Non-Metallic coatings** | 6h | **Description:** Conversion coatings and their applications:
(a) phosphating process
(b) black oxide
(c) anodizing |
| **Coatings** | 1h 30m | **Description:** Description and coating types, Metallographic and mechanical characterization of coatings, Surface preparation processes to be applied before the coating application. |
Metallic coatings

Description:
- Hot dip coatings:
 - (a) galvanizing, galvanneal, galfan and galvalume
 - (b) aluminium coatings
 - (c) tin coatings

Learning time: 5h
Theory classes: 5h

Electrochemical coatings

Description:
- Electrochemical metal coatings:
 - (a) copper
 - (b) nickel
 - (c) chromium and hard chromium

Learning time: 1h 30m
Theory classes: 1h 30m

CVD and PVD

Description:
- Basics of the CVD (Chemical Vapour Deposition) and PVD (Physical Vapour Deposition) technologies for surface coating deposition.
- Main characteristics and properties of CVD and PVD coatings and their applications.

Learning time: 3h
Theory classes: 3h

Thermal spraying

Description:
- Description of thermal spraying technology for surface coating applications.
- Main properties and characteristics of thermal spray coatings and their applications.

Learning time: 2h
Theory classes: 2h
Qualification system

If NP1>5 and NP2>5 => NF = 0.3* NP1 + 0.4 * NP2 +0.3*NAC
If NP1<5 or NP2<5 => NF = 0.7*NEF + 0.3*NAC

NP1 = Note mid-term exam 1
NP2 = Note mid-term exam 2
NEF = Note final exam

Re-evaluation: the note obtained in the re-evaluation exam will substitute the "NEF" note in the above formula.

Regulations for carrying out activities

All tasks are compulsory.
The oral presentation will be done with the support of a powerpoint presentation. Evaluation will be done based on this oral presentation.

Bibliography

Basic:

Complementary: