Degree competences to which the subject contributes

Specific:
- CEMUEQ-01. To apply knowledge of mathematics, physics, chemistry, biology and other natural sciences, obtained through study, experience and practice, with critical reasoning, to establish economically viable solutions to technical problems
- CEMUEQ-03. Conceptualize engineering models, apply innovative methods in the resolution of problems and adequate computer applications, for the design, simulation, optimization and control of processes and systems
- CEMUEII-02. Apply techniques of pattern recognition, artificial intelligence and statistical data analysis that allow decisions to be made objectively, quantitatively and reproducibly in problems of a multidisciplinary nature.

Generical:
- CGMUEQ-04. To carry out the appropriate research, undertake the design and manage the development of engineering solutions, in new or little known environments, relating creativity, originality, innovation and technology transfer
- CGMUEQ-05. Know how to establish mathematical models and develop them through appropriate information technology, as a scientific and technological base for the design of new products, processes, systems and services, and for the optimization of others already developed
- CGMUEII-01. Participate in technological innovation projects in multidisciplinary problems, applying mathematical, analytical, scientific, instrumental, technological and management knowledge.

Transversal:
- 05 TEQ. TEAMWORK. Being able to work as a team player, either as a member or as a leader. Contributing to projects pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.
- 06 URI. EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.
- 03 TLG. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

Teaching methodology

The methodology of the course combines theory lessons, laboratory sessions and autonomous learning through the development of projects and the analysis of real applications.

Learning objectives of the subject
Study load

<table>
<thead>
<tr>
<th></th>
<th>Hours large group:</th>
<th>Hours medium group:</th>
<th>Hours small group:</th>
<th>Guided activities:</th>
<th>Self study:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time:</td>
<td>150h</td>
<td>34h</td>
<td>0h</td>
<td>20h</td>
<td>96h</td>
</tr>
<tr>
<td></td>
<td>22.67%</td>
<td>0.00%</td>
<td>13.33%</td>
<td>0.00%</td>
<td>64.00%</td>
</tr>
</tbody>
</table>
| **Exploratory data analysis** | **Learning time:** 10h
Theory classes: 6h
Laboratory classes: 4h |
|-----------------------------|---------------------------|
| **Description:**
- Data visualization (histograms, box-plot, qq-plot, multi-dimensional scatter plots, etc)
- Data clustering (k-means, agglomerative, Gaussian Mixture Models)
- Dimensionality reduction and Principal Component Analysis
- Data representation and feature extraction
- Data metrics, distances, norms, etc. |
| **Related activities:**
Laboratory session 1: Data visualization and cluster analysis
Laboratory session 2: Principal Component Analysis and dimensionality reduction |

| **Supervised machine learning** | **Learning time:** 12h
Theory classes: 8h
Laboratory classes: 4h |
|-----------------------------|---------------------------|
| **Description:**
- Introduction to Classification/Regression problems
- Distance-based methods: kNN & Centroids algorithm
- Probabilistic methods: Naïve Bayes & LDA
- Rule-based methods: Decision Trees & AdaBoost
- Hyperplane-based methods: kernels & SVM |
| **Related activities:**
Laboratory session 3: Supervised classification I
Laboratory session 4: Supervised classification II |
Performance evaluation

Description:
- Type I and type II errors
- Univariate and multivariate hypothesis testing approaches
- Statistical inference and parameter estimation (Maximum-likelihood, Bayesian, bootstrapping)
 - Validation procedures: cross-validation; leave-one-out, etc.

Related activities:
- Laboratory session 5: Hypothesis testing
- Laboratory session 6: Model validation procedures

Specific objectives:

Neural networks and deep learning

Description:
- Introduction to artificial neural networks (ANNs) and deep learning
- Feed-forward ANNs for classification and regression
- Training ANNs: backpropagation algorithm, optimization stages, advanced strategies (network complexity, early stopping, dropout, weight regularization)

Related activities:
- Laboratory session 7: Artificial Neural Networks
- Laboratory session 8: Deep Learning

Advanced topics and applications

Description:
Seminars by experts, application projects, analysis of publications, news and trending topics.
Partial exam 30%
Final exam 30%
Projects and exercises 40%

Basic:

Others resources:
Python programming: https://www.python.org/
Numpy mathematical libraries: http://www.numpy.org/
Graphical representation: https://matplotlib.org/
Data repository: https://archive.ics.uci.edu/ml/index