295109 - 295II024 - Sustainability & Circular Economy

Coordinating unit: 295 - EEBE - Barcelona East School of Engineering
Teaching unit: 713 - EQ - Department of Chemical Engineering
Academic year: 2019
Degree: MASTER'S DEGREE IN MATERIALS SCIENCE AND ADVANCED MATERIALS ENGINEERING (Syllabus 2019). (Teaching unit Compulsory)
MASTER'S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2019). (Teaching unit Compulsory)
MASTER'S DEGREE IN INTERDISCIPLINARY AND INNOVATIVE ENGINEERING (Syllabus 2019). (Teaching unit Compulsory)
ECTS credits: 6
Teaching languages: English

Teaching staff
Coordinator: CESAR ALBERTO VALDERRAMA ANGEL
Others: Primer quadrimestre:
CESAR ALBERTO VALDERRAMA ANGEL - T11, T12

Degree competences to which the subject contributes

Specific:
CEMUEQ-10. To adapt to the structural changes of society motivated by factors or phenomena of an economic, energetic or natural character and to contribute with technological solutions with a high commitment of sustainability
CEMUEII-06. Evaluate the sustainability of the proposed technological solutions and their associated risks to address a problem in a quantitative and objective manner, as well as propose schemes that favor the reutilization of resources and the circular economy.

General:
CGMUEQ-01. Ability to apply the scientific method and the principles of engineering and economics, to formulate and solve complex problems in processes, equipment, facilities and services, in which the matter undergoes changes in its composition, state or energy content, characteristic of the chemical industry and other related sectors among which are the pharmaceutical, biotechnological, materials, energy, food or environmental
CGMUEQ-06. Have the capacity to analyze and synthesize the continuous progress of products, processes, systems and services using safety, economic viability, quality and environmental management criteria
CGMUEQ-07. Integrate knowledge and face the complexity of making judgments and decisions, based on incomplete or limited information, including reflections on the social and ethical responsibilities of professional practice
CGMUEII-03. Analyze the economic, social and environmental impact of technical solutions to base strategic decisions on criteria of objectivity, transparency and professional ethics.

Transversal:
02 SCS. SUSTAINABILITY AND SOCIAL COMMITMENT. Being aware of and understanding the complexity of social and economic phenomena that characterize the welfare society. Having the ability to relate welfare to globalization and sustainability. Being able to make a balanced use of techniques, technology, the economy and sustainability.
03 TLG. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.
295109 - 295II024 - Sustainability & Circular Economy

Teaching methodology
The following activities will be carried out, either in or outside the classroom, in the development of the course:

1. Lectures, participative sessions and problem solving sessions
2. Homework and assignments
3. Project
4. Mid-term and final Exam

Detailed project information regarding the scope, content, format, deadlines, etc., will be presented in an attached document.

The methodology designed for this course is the Project based learning (PBL), the students would use the Gabi software (Think step) and the support of Isabel Fullana (Sustainability Solution Manager Think step– Responsible Spain & Portugal). Other software can be used as OpenLCA and Ccal.

Invited speakers are experts who work on sustainable assessment and can participate in the definition of the system and supervising the progress of the teams.

Learning objectives of the subject
At the end of the course the student will be able to:
• Distinguish between the concepts of the use of resources and efficiency in terms of sustainable development and the linkage of thermodynamics science and environmental impact.
• Perform a sustainable assessment of a technological system by using the exergy analysis.
• Demonstrate a good knowledge and understanding of the tools used for sustainability analysis with emphasis on carbon footprint, Life cycle assessment and Life cycle costing.
• Evaluate the technological, environmental and economic feasibility of a system through the life cycle perspective.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 34h</th>
<th>Hours medium group: 0h</th>
<th>Hours small group: 20h</th>
<th>Guided activities: 0h</th>
<th>Self study: 96h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22.67%</td>
<td>0.00%</td>
<td>13.33%</td>
<td>0.00%</td>
<td>64.00%</td>
</tr>
</tbody>
</table>

The following activities will be carried out, either in or outside the classroom, in the development of the course:

1. Lectures, participative sessions and problem solving sessions
2. Homework and assignments
3. Project
4. Mid-term and final Exam

Detailed project information regarding the scope, content, format, deadlines, etc., will be presented in an attached document.

The methodology designed for this course is the Project based learning (PBL), the students would use the Gabi software (Think step) and the support of Isabel Fullana (Sustainability Solution Manager Think step– Responsible Spain & Portugal). Other software can be used as OpenLCA and Ccal.

Invited speakers are experts who work on sustainable assessment and can participate in the definition of the system and supervising the progress of the teams.

Learning objectives of the subject
At the end of the course the student will be able to:
• Distinguish between the concepts of the use of resources and efficiency in terms of sustainable development and the linkage of thermodynamics science and environmental impact.
• Perform a sustainable assessment of a technological system by using the exergy analysis.
• Demonstrate a good knowledge and understanding of the tools used for sustainability analysis with emphasis on carbon footprint, Life cycle assessment and Life cycle costing.
• Evaluate the technological, environmental and economic feasibility of a system through the life cycle perspective.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 34h</th>
<th>Hours medium group: 0h</th>
<th>Hours small group: 20h</th>
<th>Guided activities: 0h</th>
<th>Self study: 96h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22.67%</td>
<td>0.00%</td>
<td>13.33%</td>
<td>0.00%</td>
<td>64.00%</td>
</tr>
</tbody>
</table>
1. Introduction to Circular Economy

Learning time: 10h
- Theory classes: 6h
- Guided activities: 2h
- Self study: 2h

Description:
Definition and principles. Key characteristics and enabling factors of a circular economy. Resource, environmental, economic and social benefits of circular economy. Circular economy in the European and global context. Revalorisation of waste to energy, products. Description of the main routes of characterization of wastes/raw materials to quantify their energetic or material valorisation potential.

Related activities:
Homework assignment: Short exercises

Specific objectives:
The student will develop a basic understanding of the concept of circular economy and its potential application in the framework of the European context.
The student will learn how to characterize wastes and how they can be revalorized according to its properties in a circular economy context.

2. Sustainability exergy analysis

Learning time: 4h
- Theory classes: 2h
- Self study: 2h

Description:

Related activities:
Homework assignment: Short exercises

Specific objectives:
Distinguish between the concepts of the use of energy resources and energy efficiency in terms of sustainable development and the linkage of thermodynamics science and environmental impact.
3. Methodologies of economic and environmental evaluation (LCA/ LCC)

Learning time: 14h
Theory classes: 8h
Guided activities: 4h
Self study: 2h

Description:
LCA target audience and applications. LCA framework, goal and scope. Inventory analysis, allocation. Impact assessment. Carbon footprint methodology. LCC as complement of LCA. LCC methodology. Key concepts of LCC.

Related activities:
Homework assignment: Short exercises
Project: LCA and carbon footprint analysis through the CCalC, a general life cycle methodology and decision support tool.

Specific objectives:
The student will be able to identify the different stages of a life cycle analysis and how to align the economic issues associated through the LCC.
The student will be able to develop a basic inventory from a system/industrial process and to perform a carbon footprint analysis.

4. Social life cycle assessment (S-LCA)

Learning time: 6h
Theory classes: 2h
Guided activities: 2h
Self study: 2h

Description:

Related activities:
Co-operative learning approach based on a case study of S-LCA.

Specific objectives:
The students will be able to develop a step-by-step S-LCA analysis of a case study for an energy system.
5. Waste processing technologies for the production of energy

Description:
Introduction to waste to energy (WtE) conversion. WtE conversion plants in the framework of Circular Economy Policy. WtE technology options: co-processing, anaerobic digestion, landfill gas collection, thermal treatment of municipal solid waste (MSW), pyrolysis / gasification, incineration. Types of feedstock for WtE systems and their characteristics. WtE systems, engineering and technology: Pre-processing and treatment of municipal solid waste (MSW) prior to incineration, Municipal solid waste (MSW) combustion plants, Waste firing in large combustion plants, WtE systems for district heating. Environmental impacts of WtE conversion plants. Pollution control systems for waste to energy technologies.

Related activities:
Homework assignment: Short exercises
Project: Conversion of Municipal Solid Waste (MSW) to produce Electricity through the Solid and Gaseous Biomass Carbon Calculator software.

Specific objectives:
The student will be able to analyse and estimate the potential energy recovery from feedstock and the significant benefits that represent their valorisation in waste-to-energy systems. The student will be able to evaluate a waste-to-energy conversion plant from a sustainable perspective.

Learning time:
- Theory classes: 4h
- Guided activities: 2h
- Self study: 4h

6. Solid waste processing technologies for the production of products

Description:
Solids wastes are generated in large extension in the industrial and urban cycles and processing routes to recover added values or by-products will be developed. Definition of treatment flow-sheets identification of treatment or processing technologies, development of associated mass and energy balance will be defined. Routes of valorisation for different industrial applications will be selected and requirements of quality will be provided.

Related activities:
Activity 1: Solving problems related to the unit content.

Specific objectives:
The student will be able to analyse and estimate the potential material recovery from solid wastes and the significant benefits that represent their valorisation in waste-to-products systems.

Learning time:
- Theory classes: 4h
- Guided activities: 4h
- Self study: 4h
7. Water regeneration and recycling technologies

Learning time: 12h

- Theory classes: 4h
- Guided activities: 4h
- Self study: 4h

Description:

Related activities:
Activity 1: Solving problems related to the unit content.

Specific objectives:
The student will learn which routes and technologies are available today for the regeneration and reuse of wastewater in a circular economy context.

8. Urban Energy Sustainability and Smart Cities

Learning time: 11h

- Theory classes: 5h
- Guided activities: 4h
- Self study: 2h

Description:
Cities are complex entities, in which numerous actors and diverse scenarios are superimposed. Urban energy sustainability should be aimed at improving the balance of raw material flows and the production of waste/pollutants, which will unfailingly improve urban habitability, as well as favour the global goals of sustainable development. Indicators for Urban Energy Sustainability are presented. Smart energy systems are analysed and the concept of Smart Cities is presented.

Related activities:
Activity: Solving problems related to the unit content.

Specific objectives:
The student will learn to evaluate Urban Energy Sustainability and impact of Smart Cities.
The final grade is determined according to the following equation:

$$\text{Final grade} = \text{MEX} \times 0.17 + \text{FEX} \times 0.23 + \text{HOM} \times 0.17 + \text{PRO} \times 0.43$$

Homework and assignments (HOM)

Project (PRO)

Mid-term (MEX)

and **final Exam (FEX)**

In this course there is no retake exam and since the learning methodology is project-based learning, the project activity should be carried out throughout the semester to pass the course.

Bibliography

Basic:

Others resources:

- Spire Circular Economy Road-Map: https://www.spire2030.eu/intro
- EU Circular economy Road Map: https://ec.europa.eu/growth/industry/sustainability/circular-economy_en
- Scientific papers from different databases: Science Direct, Scopus
- Use the remote access to the UPC library: https://apps.biblioteca.upc.edu/discovery/bases_dades/
- SHDB tutorial: https://www.youtube.com/watch?v=WTLhr5r4aU&t=517s
- Social Hotspots Database (SHDB) tutorial: https://www.youtube.com/watch?v=WTLhr5r4aU&t=517s