Course guide
295761 - 295EM121 - Composite Technology

Unit in charge: Barcelona East School of Engineering
Teaching unit: 702 - CEM - Department of Materials Science and Engineering.

Degree: ERASMUS MUNDUS MASTER'S DEGREE IN ADVANCED MATERIALS SCIENCE AND ENGINEERING (Syllabus 2014). (Optional subject).
MASTER'S DEGREE IN MATERIALS SCIENCE AND ADVANCED MATERIALS ENGINEERING (Syllabus 2019). (Optional subject).
ERASMUS MUNDUS MASTER'S DEGREE IN ADVANCED MATERIALS SCIENCE AND ENGINEERING (Syllabus 2021). (Optional subject).

Academic year: 2022 ECTS Credits: 6.0 Languages: Spanish

LECTURER

Coordinating lecturer: M Lluisa Maspoch
Others: Abt, Tobias Martin
 Cinca I Luis, Núria
 García Masabet, Violeta Del Valle

PRIOR SKILLS

To have knowledge about plastic materials at the level of the subjects Fundamentals of Polymers and Plastics materials and composites (Degree in Materials Engineering.)

REQUIREMENTS

Have knowledge about plastic, ceramics and metals materials

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
CEMCEAM-02. (ENG) Aplicar métodos innovadores para el diseño, simulación, optimización y control de procesos de producción y transformación de materiales

Transversal:
06 URI. EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.

TEACHING METHODOLOGY
LEARNING OBJECTIVES OF THE SUBJECT

1. Know the main types of organic matrices, of second phases.
2. Know the properties of the interface and how it can be modified
3. Know the main processing processes of composite materials with fibers.
4. Learn how to design a laminated composite material in order to optimize its useful life in real service conditions.
5. Know the main compounds of inorganic matrix, particularly their phases and properties, in view of their optimal microstructural design according to the requirements of the application.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours small group</td>
<td>14,0</td>
<td>9.33</td>
</tr>
<tr>
<td>Guided activities</td>
<td>6,0</td>
<td>4.00</td>
</tr>
<tr>
<td>Hours medium group</td>
<td>28,0</td>
<td>18.67</td>
</tr>
<tr>
<td>Self study</td>
<td>102,0</td>
<td>68.00</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

Subject 1. Introduction

Description:
Definition
Classification
Examples of applications
Natural compounds
The wood

Full-or-part-time: 6h
Theory classes: 3h
Self study: 3h

Subject 2. Composites with fibers.

Description:
Types of fibers.
Types of polymeric matrix.
Matrix fiber interfaces.
Key factors that determine the properties of a compound.

Related activities:
Laboratory work.

Full-or-part-time: 21h
Theory classes: 7h 30m
Practical classes: 1h 30m
Self study: 12h
Subject 3. Compounds with particles.

Description:
Rigid particles: types of particles, function of each type of particle, effects on mechanical properties and on fracture behavior and crack propagation. Incorporation.
Elastomeric particles: preparation of these composites, examples and applications. Effect on mechanical properties and on tenacity.

Full-or-part-time: 8h 30m
Theory classes: 3h
Self study: 5h 30m

Tema 4. Foams

Description:
Definitions by cell type and size.
Preparation methods.
Examples and applications.
Properties and function of the size of the cells.

Full-or-part-time: 4h 30m
Theory classes: 1h 30m
Self study: 3h

Subject 5. Nanocomposites.

Description:
Classification and types of nanofillers in polymer matrix.
Methods of preparation of organic matrix nanocomposites.
Relationship structure and properties.
Examples of applications.

Full-or-part-time: 4h 30m
Theory classes: 1h 30m
Self study: 3h

Subject 6. Processing of composites

Description:
Manual and projection molding.
SMC and BMC.
Compression molding
Vacuum bag, infusion and RTM.
Autoclave.
Pultrusion and winding of filaments.
RIM, RRIM and SRIM.

Related activities:
Guided work.

Full-or-part-time: 11h
Guided activities: 3h
Self study: 8h
Subject 7. Micro and macromechanics of composite materials with long fibers

Description:
Unidirectional mechanical properties of composite materials with long fibers from known properties of fiber and matrix. Mechanical properties in laminates; estimation of elastic constants in the medium plane. Mechanical design of laminates.

Related activities:
Group activities

Full-or-part-time: 36h
Theory classes: 6h
Guided activities: 6h
Self study : 24h

Subject 9. Failure analysis in laminates.

Description:

Full-or-part-time: 13h 30m
Theory classes: 1h 30m
Guided activities: 3h
Self study : 9h

Inorganic Matrix Composites

Description:

Specific objectives:
To become familiar with inorganic-matrix (metal- and ceramic-) composites regarding structural and functional applications. Fundamental structure-property relationships underlying mechanical, thermal and energy related parameters. Case Studies in design and performance of advanced ceramic-matrix composites.

Related activities:
Laboratory work.

Full-or-part-time: 26h 10m
Theory classes: 9h
Laboratory classes: 1h 30m
Guided activities: 1h 30m
Self study : 14h 10m
BIBLIOGRAPHY

Basic:

Complementary: