300270 - CREA - Creativity and Engineering

Coordinating unit: 300 - EETAC - Castelldefels School of Telecommunications and Aerospace Engineering
Teaching unit: 739 - TSC - Department of Signal Theory and Communications
Academic year: 2019
Degree: MASTER'S DEGREE IN APPLIED TELECOMMUNICATIONS AND ENGINEERING MANAGEMENT (MASTEAM) (Syllabus 2015). (Teaching unit Optional)
ECTS credits: 3
Teaching languages: English

Teaching staff

Coordinator: Elías Fuste, Antonio
Others: Elías Fuste, Antonio

Opening hours

Timetable: Wednesdays from 10 a.m. to 1 p.m.

Prior skills

no one

Requirements

no one

Degree competences to which the subject contributes

Basic:
CB6. (ENG) CB6 - Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
CB7. (ENG) CB7 - Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
CB8. (ENG) CB8 - Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
CB9. (ENG) CB9 - Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.

Specific:
06 MTM. (ENG) Modelar, diseñar, implementar y evaluar sistemas competitivos, cooperativos y dinámicos.

Generical:
04 DIR. (ENG) Dirigir y planificar, a nivel técnico y de gestión, cualquier proyecto de investigación, desarrollo o innovación, basado en las TIC y aplicado a cualquier ámbito de la economía productiva.
06 RES. (ENG) Resolver problemas y mejorar procesos en cualquier ámbito social a partir de la aplicación de las TIC, integrando conocimientos de diversos ámbitos y aplicando ingeniería de alto nivel tecnológico.

Transversal:
05 TEQ. TEAMWORK. Being able to work as a team player, either as a member or as a leader. Contributing to projects pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.
06 URI. EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.

Prior skills

no one

Requirements

no one
The objective of this course is to help students understand and practice the techniques and tools that allow them to improve and develop their creativity, as well as the appreciation of creativity in other people. In this course, students will learn problem-solving techniques in engineering and the knowledge and use of creative techniques for obtaining new or alternative solutions, teamwork, motivation, performance improvement of alternative solutions, as well as the concept of innovation in all areas of your future professional work. Following a methodology based on logic, the scientific method, lateral thinking and other creative techniques, the student will focus on obtaining solutions, taking into account both the system or service, and the environment in which the system or service will fulfill its function. The student will learn to consider the influence of their own knowledge and perception in the search for information and in the achievement of solutions. When students have successfully completed this course, they can solve problems, optimize and design products and services, dissect arguments, distinguish between good reasoning and fallacies, as well as find and point out the key elements of a discussion. Critical thinking will also be encouraged, which will allow them to articulate and defend their own points of view, and recognize and identify possible flaws in their beliefs and reasoning. Theoretical examples and some specific exercises, will introduce the students in Innovation and leadership competences.

It is also a goal of this course to motivate and increase the enthusiasm of engineering students.

Learning objectives of the subject

The objective of this course is to help students understand and practice the techniques and tools that allow them to improve and develop their creativity, as well as the appreciation of creativity in other people. In this course, students will learn problem-solving techniques in engineering and the knowledge and use of creative techniques for obtaining new or alternative solutions, teamwork, motivation, performance improvement of alternative solutions, as well as the concept of innovation in all areas of your future professional work. Following a methodology based on logic, the scientific method, lateral thinking and other creative techniques, the student will focus on obtaining solutions, taking into account both the system or service, and the environment in which the system or service will fulfill its function. The student will learn to consider the influence of their own knowledge and perception in the search for information and in the achievement of solutions. When students have successfully completed this course, they can solve problems, optimize and design products and services, dissect arguments, distinguish between good reasoning and fallacies, as well as find and point out the key elements of a discussion. Critical thinking will also be encouraged, which will allow them to articulate and defend their own points of view, and recognize and identify possible flaws in their beliefs and reasoning. Theoretical examples and some specific exercises, will introduce the students in Innovation and leadership competences.

It is also a goal of this course to motivate and increase the enthusiasm of engineering students.
1. Introduction. Some critical concepts.

Taxonomies.

- Ideas
- Creativity
- Engineering problem solving
- Effectiveness vs. Efficiency
- Identity Environment-System
- Innovation
- Types of Innovations
- The "killer applications"
- Keys for a innovative entrepreneurship
- Innovation cases
- Reflections about Innovation
- Inventions
- Examples and Creativity cases
- Creativity performance
- Features of geniuses

Learning time: 19h 30m

- Theory classes: 7h
- Self study: 12h 30m

Description:
1. Introduction. Some critical concepts. Taxonomies.

Related activities:
- Discussion and exercises about deep thinking.
- Improvement of designs by adding, changing or removing something.
- Design of a new product, service or application.
- Discussion about a currently technological item.

Specific objectives:
To introduce to the students the concepts of creativity and innovation, the role played by the environment in the definition, understanding and resolution of problems. The classification and differences between creativity, innovation and inventions. Presentation of the determining characteristics of creators, innovators and entrepreneurs.
2. Critical Thinking

Description:
2. Critical Thinking
- Data, information and knowledge
- Critical Thinking
- Famous engineers performances
- Development of knowledge
- Research and obtain information
- Perception
- Thinking and reasoning
- Conscious and subconscious Mind.
- Role of the Mind in Learning
- The Heuristics
- Reasoning
- Brain and Mind, role of the cerebral hemispheres

Related activities:
- by temary and by several group exercises done in class and homework exercises (individual).
- Discussion and exercises about deep thinking.
- Discussion about a currently technological item.
- Several short exercises proposed and solved in class sessions.

Specific objectives:
To present the basis of critical thinking, how we acquire knowledge through information and our senses, how the mind works. What are the heuristic barriers, how to control the subconscious in creative processes.
3. Problem Solving and Engineering Design

<table>
<thead>
<tr>
<th>Learning time: 14h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 5h</td>
</tr>
<tr>
<td>Self study: 9h</td>
</tr>
</tbody>
</table>

Description:
- 3. Problem Solving and Engineering Design
 - Finding creative solutions
 - Strategy to promote creativity.
 - Convergent and Divergent Problems
 - Procedures for obtaining solutions.
 - Team Leadership
 - Leadership and Executive Intelligence.

Related activities:
- by temary and by several group exercises done in class and homework exercises.
- Improvement of designs by adding, changing or removing something
- Design of a new product, service or application.
- Discussion about a currently technological item.
- Design of a new engineering product or service

Specific objectives:
General presentation of engineering methods applied to the solution of problems and design. Classification of problems and designs. Leadership and teamworks.
4. Creative Techniques

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 22h</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Creative Techniques</td>
<td>Theory classes: 8h</td>
</tr>
<tr>
<td>• Pure Creative techniques.</td>
<td>Self study: 14h</td>
</tr>
<tr>
<td>o Logical Thinking</td>
<td></td>
</tr>
<tr>
<td>o Lateral Thinking</td>
<td></td>
</tr>
<tr>
<td>o Reversal Method</td>
<td></td>
</tr>
<tr>
<td>o Make Connections (Forced Relationships, Strata</td>
<td></td>
</tr>
<tr>
<td>o Da Vinci Technique)</td>
<td></td>
</tr>
<tr>
<td>o Analogies</td>
<td></td>
</tr>
<tr>
<td>o Partition, Division, or Discretization</td>
<td></td>
</tr>
<tr>
<td>o Extreme Creative Techniques (Automated Writing, Pseudo Dream Technique)</td>
<td></td>
</tr>
<tr>
<td>• Creative Systematized Techniques</td>
<td></td>
</tr>
<tr>
<td>o Tree of Ideas or Mind Maps</td>
<td></td>
</tr>
<tr>
<td>o SWOT (Strengths, Weaknesses, Opportunities, and Threats)</td>
<td></td>
</tr>
<tr>
<td>o "Six Hats" Method</td>
<td></td>
</tr>
<tr>
<td>o Morphological Matrix Method.</td>
<td></td>
</tr>
<tr>
<td>o Key Questions Technique</td>
<td></td>
</tr>
<tr>
<td>o Brainstorming</td>
<td></td>
</tr>
<tr>
<td>o Design Thinking</td>
<td></td>
</tr>
<tr>
<td>o TRIZ method</td>
<td></td>
</tr>
<tr>
<td>o Delphi Method</td>
<td></td>
</tr>
</tbody>
</table>

Related activities:
by temary and by several group exercises done in class and homework exercises.
- Improvement of designs by adding, changing or removing something
- Design of a new product, service or application.
- Discussion about a currently technological item.
- Design of a new engineering product or service
- Several short exercises proposed and solved in class sessions.

Specific objectives:
Introduction and description of the main creative techniques for the solution of problems and design of products and services. The techniques are grouped into purely creative and systematic (procedures). All the techniques are accompanied by practical exercises both individually and in teamwork.
5. Summary and Conclusions

Learning time: 5h 30m
- Theory classes: 2h
- Self study: 3h 30m

Description:
5. Summary and Conclusions
- Summary of all main subject concepts.
- Critical review of the subject and teacher.
- Proposed improvements.

Related activities:
Competences: CB8-CB9-CB10-E06-T05-T06 by the temary and by several group exercises.

Specific objectives:
Critical review of the subject, the teacher and the students. Review and specification of the main concepts. Proposals for improvement and refinements.

Qualification system
Ongoing evaluation of weekly assignments exercises, three exercises per week, and class contributions to the discussions proposed.

Regulations for carrying out activities
The evaluation is continuous through the weekly exercises, its solution is discussed and discussed in class. The final grade is the average of the evaluation of the exercises nuanced by the individual interventions and the team exercises solved in class.
300270 - CREA - Creativity and Engineering

Bibliography

Basic:

Others resources:

Audiovisual material

Projections

PC and screen projector