The Optimization for Applied Engineering Design course is aimed at providing the participants with knowledge in applied optimization, with focus on the application of theory and methods in deterministic optimization and heuristic techniques for modeling and solving optimization problems originating from the area of communication and others areas.

Learning objectives of the subject

The Optimization for Applied Engineering Design course is aimed at providing the participants with knowledge in applied optimization, with focus on the application of theory and methods in deterministic optimization and heuristic techniques for modeling and solving optimization problems originating from the area of communication and others areas.
Introduction to Optimization

Description:
Definition of an Optimization Problem. Unconstrained and Constrained Optimization.

Related activities:
Problems resolution
Control

Specific objectives:
- Definition of an Optimization Problem
- Components of an Optimization Problem

- Unconstrained Optimization
- Statement of an Optimization Problem
- Concepts
- Concavity and Convexity
- Conditions for local optimizers: Interior and Boundary cases

- Equality Constrained Optimization
- Conditions for local optimizers

- Inequality and Equality Constrained Optimization
- Conditions for local optimizers

<table>
<thead>
<tr>
<th>Learning time:</th>
<th>15h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical classes:</td>
<td>5h</td>
</tr>
<tr>
<td>Self study:</td>
<td>10h</td>
</tr>
</tbody>
</table>
Part I: Optimization with Engineering Applications

Description:
Network Optimization
Mixed Integer Programming
Multi-Objective Optimization

Related activities:
Lab learning sessions
Laboratory Project sessions
Control

Specific objectives:
* Network Optimization
 - Special type of linear Programming
 - Continuous and Discrete Models
* Mixed Integer Programming
 - Common IP Problems- Technique for formulating CO problems as ILP
 - Linearizing nonlinear functions
* Multi-Objective Optimization
 - Definition of a MOP
 - Pareto Optimal Solutions
 - Solving Multi-objective Optimization Problems

Learning time: 48h
 - Practical classes: 18h
 - Self study: 30h
Part II: Metaheuristics Optimization Algorithms

Description:
Introduction
Analysis of different algorithms

Related activities:
Lab learning session
Laboratory Project session

Specific objectives:
* Introduction

* Analysis of different algorithms depending on the progress of the course
 - Evolutionary Algorithms
 - Genetic Algorithms
 - Differential Evolution Algorithms
 - Ant Colony Optimization
 - Particle Swarm Optimization
 - Biogeography-based Optimization

<table>
<thead>
<tr>
<th>Learning time: 12h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical classes: 4h</td>
</tr>
<tr>
<td>Self study : 8h</td>
</tr>
</tbody>
</table>

Part III. Computational complexity

Description:
Analysis of the computational complexity of an optimization problem

Related activities:
Problems resolution
Control

Specific objectives:
Basic Complexity classes
Intractable Problems. NP and NP completeness
Algorithmic complexity in Python

<table>
<thead>
<tr>
<th>Learning time: 7h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical classes: 2h 30m</td>
</tr>
<tr>
<td>Self study : 5h</td>
</tr>
</tbody>
</table>
Part IV. Optimization Case Studies

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will work on a given case study including the tasks needed to understand the problem, work out the details, find a viable way to attack the problem and implement a solution through a mathematical model and a heuristic.</td>
</tr>
</tbody>
</table>

Learning time: 42h 30m
- Practical classes: 14h
- Self study: 28h 30m

Qualification system

Lab learning Sessions 20%
Laboratory Project 20%
Mid-course control 20%
Case Study Analysis and Development 20%
Final exam 20%

Bibliography

Basic:

Complementary: