300477 - MOBCOMM - Mobile Communications

Coordinating unit: 300 - EETAC - Castelldefels School of Telecommunications and Aerospace Engineering
Teaching unit: 739 - TSC - Department of Signal Theory and Communications
Academic year: 2019
Degree: MASTER'S DEGREE IN ADVANCED TELECOMMUNICATION TECHNOLOGIES (Syllabus 2019). (Teaching unit Optional)
ECTS credits: 5 Teaching languages: English

Teaching staff
Coordinator: Ruiz Boque, Silvia
Others: Ruiz Boque, Silvia

Prior skills
Radiocommunications. Digital communications systems.

Teaching methodology
Lectures, problem solving and case discussion.
Lectures will give introductory material, while through problems and cases more advanced topics and tools will be analysed.

Each of the topics described at the Detailed Contents section will be done in one hour lecture. Out of class activities will be:
a) study additional material provided by the teacher
b) solve problems/cases related with the theory session
c) readings of technical/divulgaton papers related with the topic.

Learning objectives of the subject
At the end of the course the student should be able to:

understand the latest results, trends, activities and applications in the 4G, IoT, M2M and cooperative communications domain.
Perform a system level planning of any cellular network.
Design a 4G planning for a given geographical area
Design a IoT network choosing the appropriate technologies.
Design a M2M application
Content

Unit 1: LTE and LTE-A Networks

Description:
- OFDMA, SC-FDM, physical layer and network structure
- S1 and X2 interfaces
- Mobility and Radio Resource Management
- Link Budget, data rates, coverage and capacity
- LTE-A releases 8-9 and 10-12
- Carrier Aggregation, CoMP and MIMO solutions

Related activities:
Related activities: case discussion based on readings on applied aspects of LTE and LTE-A, use of hand-on tutorials and problem solving

Learning time: 18h
Theory classes: 6h
Self study: 12h

Unit 2: HetNets and dense cell deployment

Description:
- Heterogeneous Networks (HetNet)
- Coordinated Multipoint (CoMP)
- Relay nodes (RN)
- Small Cell enhancements (SCE)
- 3D beamforming & Massive MIMO

Related activities:
Related activities: case discussion based on readings on applied aspects of WSN and IoT, use of hand-on tutorials and problem solving

Learning time: 15h
Theory classes: 5h
Self study: 10h

Unit 3: WSN and IoT

Description:
- Introduction to WSN architectures
- Radio level WLAN interworking
- Machine Type Communication (MTC) and Device-to-Device Communication (D2D)
- LTE-M and NB-IoT and examples in real scenarios

Related activities:
Related activities: case discussion based on readings on applied aspects of WSN and IoT, use of hand-on tutorials and problem solving.

Learning time: 15h
Theory classes: 5h
Self study: 10h
Unit 4: Cooperative Communications

Learning time: 12h
Theory classes: 4h
Self study: 8h

Description:
* Networking protocols
* Cooperative strategies and rates
* Network coding
* Cooperative PHY and MAC

Related activities:
Related activities: case discussion based on readings on applied aspects of cooperative communications, use of hand-on tutorials and problem solving

Unit 5: Cognitive Networks and spectrum management

Learning time: 12h
Theory classes: 4h
Self study: 8h

Description:
* Cognitive Radios and Cognitive Network architectures
* Cognitive cycle, spectrum sensing, decision, sharing and mobility
* Routing algorithms, transport layer and cross layer solutions

Related activities:
Related activities: case discussion based on readings on applied aspects of cognitive networks, use of hand-on tutorials and problem solving

Unit 6: Cellular planning

Learning time: 47h
Theory classes: 15h
Self study: 32h

Description:
* Expected traffic and allocated resources
* Frequency planning: fixed reuse, soft reuse and frequency partitioning
* Handover schemes
* Cell clusters
* 2G planning: steps and examples
* 3G planning: steps and examples
* 4G planning: steps and examples
25% midterm control
25% final exam
10% each homework deliverable. Students will have to deliver five reports that should be done preferably working in pairs.

Bibliography

Basic:

Others resources:
Additionally technical papers (IEEE journals, but also operators/manufacturers reviews) will be assigned to students. Also 3GPP documents and RFC from IETF will be given.