

Guía docente 330335 - MARG - Modelización y Evaluación de Recursos Geológicos

Última modificación: 28/04/2025

Unidad responsable: Escuela Politécnica Superior de Ingeniería de Manresa

Unidad que imparte: 750 - EMIT - Departamento de Ingeniería Minera, Industrial y TIC.

Titulación: MÁSTER UNIVERSITARIO EN INGENIERÍA DE MINAS (Plan 2013). (Asignatura obligatoria).

Curso: 2025 Créditos ECTS: 5.0 Idiomas: Catalán, Castellano

PROFESORADO

Profesorado responsable: MARIA PURA ALFONSO ABELLA

Otros: Bascompta Massanès, Marc

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

- 1. Conocimiento adecuado de modelización, evaluación y gestión de recursos geológicos, incluidas las aguas subterráneas, minerales y termales.
- 2. Explorar, investigar, modelizar y evaluar yacimientos de recursos geológicos.

Transversales:

3. USO SOLVENTE DE LOS RECURSOS DE INFORMACIÓN: Gestionar la adquisición, la estructuración, el análisis y la visualización de datos e información en el ámbito de especialidad, y valorar de forma crítica los resultados de dicha gestión.

METODOLOGÍAS DOCENTES

Se combinará el aprendizaje dirigido: Clases expositivas con el activo (clases prácticas).

Las clases expositivas estarán soportadas por presentaciones en Power Point las cuales estarán a disposición del alumno, a través de

Gran parte de las clases prácticas consistirán en actividades con ordenadores usando los más modernos softtwares para modelización. Las clases prácticas se llevarán a cabo en grupos pequeños de alumnos de forma que cada alumno dispondrá de un ordenador.

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

Al terminar la asignatura de Modelización y Evaluación de Recursos Geológicos, el estudiante debe ser capaz de:

- Utilizar bases de datos para la modelización de recursos minerales: representación morfológica de los cuerpos geológicos, estimación de recursos, control de leyes.
- Crear modelos geológicos y de mineralización 2D y/o 3D para un determinado yacimiento mineral.
- Realizar análisis estadísticos y geoestadísticos de los datos y determinación de los métodos más apropiados de interpolación de leyes y densidades.
- Realizar cálculos de reservas por el método de la distancia inversa usando programas de ordenador.

Fecha: 01/06/2025 Página: 1 / 4

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas aprendizaje autónomo	80,0	64.00
Horas grupo mediano	45,0	36.00

Dedicación total: 125 h

CONTENIDOS

1. Herramientas de la modelización de recursos geológicos

Descripción:

Introducción. Tipo de modelización de recursos geológicos. Recursos y reservas. Tipo de reservas. Muestreo. Métodos de muestreo. Número de muestras.

Actividades vinculadas:

Prácticas de laboratorio donde se aplican los conocimientos adquiridos en las clases teóricas.

Prueba P1.

Dedicación: 17h Grupo grande/Teoría: 4h Grupo pequeño/Laboratorio: 2h Aprendizaje autónomo: 11h

2. Métodos tradicionales de cálculos de reservas

Descripción:

Descripción de los métodos clásicos de cálculo de reservas y discusión de sus inconvenientes y ventajas.

Actividades vinculadas:

Prácticas de laboratorio donde se aplican los conocimientos adquiridos en las clases teóricas.

Prueba P1.

Dedicación: 17h Grupo grande/Teoría: 4h Grupo pequeño/Laboratorio: 2h Aprendizaje autónomo: 11h

3. Métodos geoestadísticos de cálculo de reservas

Descripción:

Teoría de las variables regionalizadas. El variograma. Mallas. Anisotropía. Error de estimación. El Kriking.

Actividades vinculadas:

Prácticas de laboratorio donde se aplican los conocimientos adquiridos en las clases teóricas.

Prueba P1.

Dedicación: 22h Grupo grande/Teoría: 4h Grupo pequeño/Laboratorio: 4h Aprendizaje autónomo: 14h

4. Modelización de las reservas de los yacimientos minerales

Descripción:

Softwares. Representaciones mediante el programa Vulkan. Cálculo de reservas con el programa Vulkan.

Actividades vinculadas:

Prácticas de laboratorio en ordenadores individuales para resolver el cálculo de reservas con solfwares específicos.

Prueba P1.

Dedicación: 33h Grupo grande/Teoría: 2h Grupo pequeño/Laboratorio: 10h Aprendizaje autónomo: 21h

5. Modelización y simulación en temáticas hidrológicas

Descripción:

Es importante conocer el comportamiento del agua frente a diferentes expectativas. Este hecho puede llegar muchas veces a adecuar estructuras que pueden ahorrar dinero e incluso vidas humanas.

Actividades vinculadas:

Prácticas de ordenador donde se aplican los conocimientos adquiridos en las clases teóricas.

Prueba P2.

Dedicación: 36h Grupo grande/Teoría: 3h Grupo pequeño/Laboratorio

Grupo pequeño/Laboratorio: 10h Aprendizaje autónomo: 23h

SISTEMA DE CALIFICACIÓN

La calificación final es la suma de las calificaciones parciales correspondientes a exámenes (parciales o final), trabajos de las pruebas de seguimiento.

Las pruebas parciales sobre partes del contenido de la asignatura representarán 90% de la nota total, los trabajos sobre las y los ejercicios de seguimiento el 10%.

La calificación final será:

Nfinal = 0,45 NexP1 + 12:45 NexP2 + 0,1 Nes

Nfinal: calificación final.

NexP1: calificación de la prueba 1. NexP2: calificación de la prueba 2.

Nes: calificación de ejercicios de seguimiento.

NORMAS PARA LA REALIZACIÓN DE LAS PRUEBAS.

Se harán dos pruebas parciales, con las que se hará media, para superar estas pruebas el mínimo de cada prueba individual será 4 puntos sobre 10 y la media de las dos debe ser igual o superior a cinco.

Los que no hayan superado alguna de estas pruebas deberán realizar la prueba final.

La prueba final consta de una parte con cuestiones sobre conceptos asociados a los objetivos de aprendizaje de la asignatura, y de ejercicios de aplicación.

Fecha: 01/06/2025 Página: 3 / 4

BIBLIOGRAFÍA

Básica:

- Annels, A. E. Mineral deposit evaluation: a practical approach [en línea]. London: Chapman & Hall, 1991 [Consulta: 17/01/2023]. Disponible a:

 $\frac{\text{https://ebookcentral-proquest-com.recursos.biblioteca.upc.edu/lib/upcatalunya-ebooks/detail.action?pq-origsite=primo&docID=6505837. ISBN 0412352907.}$

- Orche, E. Manual de evaluación de yacimientos minerales. Madrid: Carlos López Jimeno, 1999. ISBN 8492170891.
- Rossi, M. E.; Deutsch, C. V. Mineral resource estimation [en línea]. Dordrecht: Springer, 2014 [Consulta: 31/05/2022]. Disponible a: https://ebookcentral-proquest-com.recursos.biblioteca.upc.edu/lib/upcatalunya-ebooks/detail.action?docID=6314881. ISBN 1402057164.

RECURSOS

Otros recursos:

Programa SGems Programa Vulcan