

Guía docente 804228 - ASO - Arquitectura y Sistemas Operativos

Última modificación: 16/07/2025

Unidad responsable: Centro de la Imagen y la Tecnología Multimedia

Unidad que imparte: 804 - CITM - Centro de la Imagen y la Tecnología Multimedia.

Titulación: GRADO EN DISEÑO Y DESARROLLO DE VIDEOJUEGOS (Plan 2014). (Asignatura obligatoria).

Curso: 2025 Créditos ECTS: 6.0 Idiomas: Catalán, Inglés

PROFESORADO

Profesorado responsable: Costa Prats, Juan José

Otros: Costa Prats, Juan José

García Almiñana, Jordi

METODOLOGÍAS DOCENTES

La asignatura combinará exposiciones de conceptos fundamentales por parte del profesor con sesiones participativas, donde los estudiantes prepararán, presentarán y defenderán trabajos sobre conceptos específicos de la asignatura. Se utilizan técnicas de aprendizaje cooperativo para motivar a los alumnos a realizar las actividades. Adicionalmente se fomentará la realización de trabajos prácticos donde se pongan en práctica los conceptos estudiados.

Por lo tanto, se usarán las metodologías docentes:

- . Método expositivo / lección magistral.
- . Clase participativa.
- . Aprendizaje basado en problemas y en exposiciones y defensas de prácticas o trabajos.
- . Sesiones prácticas de programación.

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

- Identificar los lenguajes de programación, librerías, sistemas operativos, bases de datos y programas informáticos que se aplican al diseño y desarrollo de videojuegos.
- Utilizar los lenguajes de programación y librerías en la implementación de bases de datos y programas informáticos para aplicaciones en el diseño y desarrollo de videojuegos.
- Aplicar, en el ámbito del desarrollo de videojuegos y juegos en red, la gestión de: procesos, memoria, sistema de archivos, entrada/salida y protocolos de comunicación.

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas grupo mediano	16,0	10.67
Horas aprendizaje autónomo	90,0	60.00
Horas grupo grande	24,0	16.00
Horas actividades dirigidas	20,0	13.33

Dedicación total: 150 h

CONTENIDOS

Tema 1: Introducción. Evolución de los computadores y los sistemas operativos

Descripción:

Introducción a la asignatura

Dedicación: 5h

Grupo grande/Teoría: 2h Aprendizaje autónomo: 3h

Parte I: Arquitectura del computador

Descripción:

Tema 2: Arquitectura del computador
Tema 3: El lenguaje ensamblador
Tema 4: Computadores actuales

Dedicación: 85h Grupo grande/Teoría: 34h Aprendizaje autónomo: 51h

Part II: Los sistemas operativos

Descripción:

 \cdot Tema 5: Estructura básica del sistema operativo

 \cdot Tema 6: Gestión de la memoria

· Tema 7: Gestión de procesos

 \cdot Tema 8: Gestión de la entrada / salida

 \cdot Tema 9: Aspectos específicos del SO para videojuegos

Dedicación: 60h Grupo grande/Teoría: 24h Aprendizaje autónomo: 36h

ACTIVIDADES

Hands On Lab (HOL)

Descripción:

Parte práctica del curso donde se ponen en práctica los conceptos teóricos explicados: ensamblador, gestión de procesos, memoria y entrada / salida.

Dedicación: 15h

Grupo pequeño/Laboratorio: 15h

Trabajo de Investigación

Descripción:

Trabajo de investigación para aplicar los conceptos teóricos del curso a un caso de uso concreto del mundo de los videojuegos

Dedicación: 8h

Grupo grande/Teoría: 8h

Fecha: 27/07/2025 **Página:** 2 / 3

Test

Descripción:

Examen para demostrar la consecución de los conceptos teóricos

Dedicación: 2h

Grupo grande/Teoría: 2h

SISTEMA DE CALIFICACIÓN

La asignatura se evalúa mediante la evaluación de estos componentes:

- · Examen part1 (EX1)
- . Trabajo de investigación (TR)
- . Examen part2 (EX2)
- . Trabajo práctico (TP)

Ambos exámenes se realizan a mitad y final de curso respectivamente y son de carácter teórico, donde el estudiante debe demostrar conocimiento y comprensión de los conceptos trabajados durante el curso.

El trabajo de investigación consiste en la búsqueda de documentación durante el curso sobre conceptos específicos de la asignatura, e incluye una exposición y debate. El trabajo práctico consiste en resolver una serie de problemas de programación que muestran los conceptos estudiados. Estos trabajos se realizarán en grupo. La calificación final se calcula según la relación:

F = 22.5% EX1 + 22.5% TR + 22.5% EX2 + 22.5% TP + 10% AA

Donde AA corresponde a la participación y actitud de aprendizaje.

Los estudiantes que hayan suspendido en la evaluación continua se pueden presentar a reevaluación (siempre que la nota sea diferente a NP). La calificación obtenida en la reevaluación sustituye, en caso de ser superior, el conjunto de las obtenidas en los exámenes parcial y final. La nota final de la asignatura, calculada a partir del examen de reevaluación, no podrá ser superior a 5.

Las acciones irregulares que puedan llevar a una variación significativa de la calificación de uno o más estudiantes constituyen una realización fraudulenta de un acto de evaluación. Esta acción comporta la calificación descriptiva de suspenso y numérica de 0 del acto de evaluación ordinario global de la asignatura, sin derecho a reevaluación.

Si los docentes tienen indicios de la utilización de herramientas de IA no permitidas en las pruebas de evaluación, podrán convocar a los estudiantes implicados a una prueba oral o a una reunión para verificar la autoría.

BIBLIOGRAFÍA

Básica:

- Randal E. Bryant, David R. O'Hallaron. Computer Systems: A programmer's perspective. Pearson Education,
- Kip R. Irvine. Lenguaje ensamblador para computadoras basadas en Intel®. Pearson Educación, 2008.

Fecha: 27/07/2025 **Página:** 3 / 3