820004 - F1FM - Physics I: Fundamentals of Mechanics

Coordinating unit: 295 - EEBE - Barcelona East School of Engineering
Teaching unit: 748 - FIS - Department of Physics
Academic year: 2019
Degree: BACHELOR’S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN BIOMEDICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN ENERGY ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN MATERIALS ENGINEERING (Syllabus 2010). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN BIOMEDICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN ENERGY ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)

ECTS credits: 6
Teaching languages: Catalan, Spanish, English

Teaching staff
Coordinator: GLÒRIA SALA CLADELLAS
Others: Primer quadrimestre:
MARTA ALARCON JORDAN - M81, M82, M83, M84, T21, T22, T23, T24
ARACELI AZNAR LUNQUE - M61, M62, M63, M71, M72, M73, T11
MARTI BELTRAN GONZALEZ - M34, M51, M52, M53, M74, T14, T24, T91, T92, T93
SALIM BENADOUA IVARIS - M31, M32, M33, M41, M42, M43, M81, M82, M83
MURIEL BOTEY CUMELLA - M51, M52, M53, M54, M81, M82, M83, M84
PERE BRUNA ESCUER - M41, M42, M43, M44
GERMINAL CAMPS ANAYA - M25, M54, M64, T84, T85, T94
DANIEL CRESPO ARTIAGA - M51, M52, M53, M54
ANTONIO FERNANDEZ MARTINEZ - T21, T22, T23
MANUEL LINARES ALEGRET - M71, M72, M73, M74, T91, T92, T93, T94
ROBERTO MACOVEZ - T11, T12, T13, T14, T81, T82, T83, T84, T85
DANIEL MALAGARRIGA GUASCH - T81, T82, T83
DAVID MERINO ARRANZ - M11, M12, M13, M14, M21, M22, M23, M44, M84
LUIS CARLOS PARDO SOTO - M61, M62, M63, M64
TRINITAT PRADELL CARA - M21, M22, M23, M24, M25, M31, M32, M33, M34
GLORIA SALA CLADELLAS - M11, M12, M13, M14, T91, T92, T93, T94
SOFIA VALENTI - T12, T13

Degree competences to which the subject contributes

Specific:
1. Understand the general laws of mechanics, thermodynamics, fields and waves, and electromagnetism and apply them to engineering problems.

Transversal:
2. TEAMWORK - Level 1. Working in a team and making positive contributions once the aims and group and individual responsibilities have been defined. Reaching joint decisions on the strategy to be followed.

Teaching methodology

Teaching methodology used: exposition 30%, individual work 60 %, group work 6%, guided activities 4%.

Learning objectives of the subject

Training the student through the acquisition of a working method and providing some knowledge of the principles and basic concepts of Mechanics, so that he/she can apply them to solve problems in the engineering field.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 51h</th>
<th>34.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 9h</td>
<td>6.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
820004 - F1FM - Physics I: Fundamentals of Mechanics

Content

<table>
<thead>
<tr>
<th>Subject 1: Introduction</th>
<th>Learning time: 11h 12m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description: Measurement and uncertainty. Graphical analysis and linearization. Vectors.</td>
<td></td>
</tr>
<tr>
<td>Related activities: Laboratory sessions: all laboratory session in both terms</td>
<td></td>
</tr>
<tr>
<td>Specific objectives: Knowing the meaning of the dimensions of a physical magnitude. Knowing the uncertainty associated with experimental measurements and knowing how to calculate the propagation of uncertainty. Learning how to draw graphical representations of experimental data and how to make linear regressions.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject 2: Particle kinematics</th>
<th>Learning time: 21h 24m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description: Position, displacement, velocity and acceleration vectors. Motion in one dimension. Motion in two and three dimensions. Circular motion. Simple harmonic motion. Moving frame of reference: Galileo's transformations.</td>
<td></td>
</tr>
<tr>
<td>Related activities: Laboratory session: Simple pendulum (spring term)</td>
<td></td>
</tr>
<tr>
<td>Specific objectives: Modeling the motion for a particle, determining the equations of motion from its acceleration and initial conditions. Characterizing the linear and circular motion. Knowing the crucial role of the simple harmonic motion since for its wide application in the study of diverse physical phenomena. Establishing the concept of frame of reference to understand the relative character of the movement.</td>
<td></td>
</tr>
</tbody>
</table>
Subject 3: Particle dynamics

Description:

Related activities:
Laboratory session: Equilibrium forces (spring term)

Specific objectives:
Understanding the concepts of force and mass and knowing Newton's laws of motion. Acquiring the ability to apply the Newton's laws to solve problems that include various particles. Knowing how to establish the conditions for the static equilibrium of a rigid body and solving problems of equilibrium of the rigid body. Knowing the differences between inertial and non-inertial frames of reference.

Subject 4: Work, energy and power

Description:

Related activities:
Laboratory session: Pulleys (fall term)

Specific objectives:
Understanding the physical concepts of work, power and energy. Identifying conservative forces and obtaining the corresponding potential energy associated with them. Problem-solving applying the work-kinetic energy theorem work and work-energy theorem. Knowing how to apply the law of conservation of mechanical energy.
Subject 5: Dynamics of systems of particles

Learning time: 26h
Theory classes: 8h
Laboratory classes: 2h
Self study: 16h

Description:

Related activities:
Laboratory session:
Collisions (fall term)

Specific objectives:
Describing the movement of the center of masses of systems of particles. Knowing to formulate and to apply the principles of conservation of the amount of movement and of the mechanical energy of systems of particles. Applying the theorems of conservation in the study of collisions and explosions.

Subject 6: Planar rigid bodies

Learning time: 35h
Theory classes: 11h
Laboratory classes: 2h
Self study: 22h

Description:

Related activities:
Laboratory sessions:
Rotation (spring term)
Ballistic pendulum (fall term)

Specific objectives:
Knowing the Newton's second law for rotation and its application to solve problems. Knowing how to characterize the planar motion: coplanar translation and rotation about a fixed axis. Knowing the dynamics of the flat movement and knowing how to apply it to solve problems. Knowing and applying the angular momentum conservation in problem-solving.
Subject 7: Oscillations and waves

Learning time: 11h 12m
- Theory classes: 3h 24m
- Laboratory classes: 1h
- Self study: 6h 48m

Description:

Related activities:
Laboratory sessions:
Standing waves on strings (fall term)
Sound waves (spring term)

Specific objectives:
Identifying the condition for simple harmonic motion in terms of acceleration. Understanding the wave concepts of propagation of energy and momentum. Knowing how to describe harmonic waves. Understanding interference phenomena, in particular, standing waves.

Qualification system
MARK M1:
- Laboratory: 15%
- Test 1: 20%
- Test 2: 25%
- Test 3: 20%
- Problems: 20%

MARK M2:
- Laboratory: 20%
- Test 3: 40%
- Problems: 40%

FINAL GRADE = maximum (M1 ; M2)
THERE IS NO REASSESSMENT EXAM

Regulations for carrying out activities
In all exams, students can use a pocket calculator. Besides, a physics formula sheet will be provided in the Problems' exam.
Bibliography

Basic:

Complementary:

Others resources:

Hyperlink

Curso Interactivo de Física en Internet
http://www.sc.ehu.es/sbweb/fisica/default.htm

La baldufa: un entorn per a l'aprenentatge de la física.
http://baldufa.upc.edu/