Course guides
820007 - CAL - Calculus

Unit in charge: Barcelona East School of Engineering
Teaching unit: 749 - MAT - Department of Mathematics.

Degree:
BACHELOR’S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Compulsory subject).
BACHELOR’S DEGREE IN MATERIALS ENGINEERING (Syllabus 2010). (Compulsory subject).
BACHELOR’S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Compulsory subject).
BACHELOR’S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Compulsory subject).
BACHELOR’S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Compulsory subject).
BACHELOR’S DEGREE IN BIOMEDICAL ENGINEERING (Syllabus 2009). (Compulsory subject).
BACHELOR’S DEGREE IN ENERGY ENGINEERING (Syllabus 2009). (Compulsory subject).

Academic year: 2020
ECTS Credits: 6.0
Languages: Catalan, English, Spanish

LECTURER

Coordinating lecturer: ANGELES CARMONA MEJIAS - MAGDA LILIANA RUIZ ORDOÑEZ

Others: Diferents Professors/es del Departament de Matemàtiques
(Several professors from the Department of Mathematics)
(Diferentes profesores/as del Departamento de Matemáticas)

PRIOR SKILLS

This course requires no previous skills.

REQUIREMENTS

This course has no prerequisites.

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
2. Solve mathematical problems that may arise in engineering. Apply knowledge of linear algebra; geometry; differential geometry; differential and integral calculus; differential equations and partial differential equations; numerical methods; numerical algorithms; statistics and optimisation.

Transversal:
1. SELF-DIRECTED LEARNING - Level 1. Completing set tasks within established deadlines. Working with recommended information sources according to the guidelines set by lecturers.

TEACHING METHODOLOGY

The course uses the expositive methodology by 40% and individual work by 60%.

LEARNING OBJECTIVES OF THE SUBJECT

General objectives: Students will learn the fundamental concepts of single variable calculus, developing the capacity of abstraction and applying these techniques to mathematical problems encountered in engineering.
STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>90,0</td>
<td>60.00</td>
</tr>
<tr>
<td>Hours small group</td>
<td>15,0</td>
<td>10.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>45,0</td>
<td>30.00</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

Sets of numbers

Description:
- The set of real numbers: Supremum axiom.

Specific objectives:
The students will learn:
- Supremum axiom, key to understand the completeness of real numbers.
- To operate with complex numbers.
- To establish relationships between binomial, polar, and exponentials forms.

Related activities:
Lab session 1. Conics
Lab session 2. Complex numbers

Full-or-part-time: 30h
Theory classes: 8h
Laboratory classes: 4h
Self study: 18h

Functions of real variable. Limits and continuity.

Description:
- Continuity. Continuity theorems (Weierstrass, Bolzano, intermediate value theorem).

Specific objectives:
Students will learn:
- To represent a real-valued function.
- To understand the importance of the concept of limit and its relationship to continuity.

Related activities:
Lab Session 3. Limits and continuity

Full-or-part-time: 30h
Theory classes: 10h
Laboratory classes: 2h
Self study: 18h
Differentiation of real-valued functions

Description:
- Mean value theorems (Rolle, Cauchy, Lagrange).
- Extrema of a function in an interval.

Specific objectives:
The student will learn:
- The basic concepts of differentiation.
- To understand the geometric interpretation of the derivative and its applications in engineering.
- To master and apply the elementary properties of the differentiable functions.
- To master the computation of derivatives, both analytically and with the help of mathematical software.
- To model and solve several problems by computing derivatives: optimization, approximation of functions, and qualitative study of functions.

Related activities:
Lab session 6. PART I: Taylor polynomial

Full-or-part-time: 35h

- Theory classes: 12h
- Laboratory classes: 2h
- Self study: 21h

Integration of real-value functions

Description:
- Primitive functions.
- Integration methods: direct methods, change of variable, integration by parts, trigonometric integrals.
- Computation of areas of plane regions. Applications.
- Improper integrals.

Specific objectives:
Students will learn:
- To express in terms of integrals the problem of computing the area of a plane region.
- To understand the relationship between derivatives and integrals, given by the fundamental theorem of calculus.
- To use the Barrow’s rule.
- To compute some improper integrals of continuous functions on an unbounded interval, and improper integrals of functions with a singularity inside a bounded interval.

Related activities:
Lab session 6. PART II: Integration
Lab session 7. Lab session exam (10%)

Full-or-part-time: 42h

- Theory classes: 13h
- Laboratory classes: 3h
- Self study: 26h
Linear algebra

Description:
Systems of linear equations. Gaussian elimination.
Inverse matrix.
Linear geometry: equation of a straight line and a plane; orthogonality and parallelism; distances.

Specific objectives:
Students will learn:
-to solve systems of linear equations.
-to graphically represent the solution of a system of linear equations.

Related activities:
Lab Session 4. Matrices
Lab Session 5. Generic competence assessment

Full-or-part-time: 15h
Theory classes: 2h
Laboratory classes: 4h
Self study: 9h

GRADING SYSTEM

First partial exam: 20% (Test+Exercises)
Second partial exam: 25% (Test+Exercises)
Third partial exam: 35% (Test+Exercises)
Laboratory: 20%

Two marks will be obtained:

\[N_1 = 20\%\text{LAB} + 20\%\text{PAR1} + 25\%\text{PAR2} + 35\%\text{PAR3} \]
\[N_2 = 20\%\text{LAB} + 40\%\text{TestPAR3} + 40\%\text{ExercicesPAR3}. \]

The final mark is \(N = \max(N_1; N_2). \)

The evaluation will be conducted through the assessment by the teacher.

The students will only pass the course through the assessments during the course: three partial exams (first and second partial exams within the course weeks; the third partial exam will be scheduled in the official final examination period), laboratory, and the evaluation of the generic competency. This subject DOES NOT have a revaluation exam. The topics covered are cumulative and the contents of the course will not be released by completing the corresponding partial exams.

An individual test will be performed in the assessment of the laboratory, during the last laboratory session, and another test will evaluate the generic competency. This course assesses the self-directed learning competency through individual tests during the development of one of the laboratory sessions. More precisely, the test will assess conics.

EXAMINATION RULES.

No writing paper, books, papers, manuscripts, or notes of any kind are allowed to be taken into an examination room. The use of calculators, cell phones, tablets, or any electronic device is not permitted during the exams.
BIBLIOGRAPHY

Basic:

Complementary:

RESOURCES

Hyperlink:
- Khan Academy. Resource

Other resources:
Web page: https://es.khanacademy.org