Course guides
820013 - MF - Fluid Mechanics

Unit in charge: Barcelona East School of Engineering
Teaching unit: 729 - MF - Department of Fluid Mechanics.

Degree: BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Compulsory subject).
BACHELOR'S DEGREE IN MATERIALS ENGINEERING (Syllabus 2010). (Compulsory subject).
BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Compulsory subject).
BACHELOR'S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Compulsory subject).
BACHELOR'S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Compulsory subject).
BACHELOR'S DEGREE IN BIOMEDICAL ENGINEERING (Syllabus 2009). (Compulsory subject).
BACHELOR'S DEGREE IN ENERGY ENGINEERING (Syllabus 2009). (Compulsory subject).

Academic year: 2020 ECTS Credits: 6.0 Languages: Catalan, Spanish

LECTURER

Coordinating lecturer: ALFREDO DE JESUS GUARDO ZABALETA - RICARDO JAVIER PRINCIPE RUBIO - CARLOS RUIZ MOYA - ALFRED FONTANALS GARCIA

Others:
Primer quadrimestre:
BOUALEM YOUCEF NASSIM BENABDELOUED - M11, M12, M13, M14, M33, M34
ALBERTO ANTONIO CARBO BECH - M31, M32, M41, M42, M43, M44, M45
JOSE ALEJANDRO CARRILLO CORTES - T11, T12, T13, T14
JOSE IGNACIO ESEBERRI PIEDRA - T21, T22
ALFRED FONTANALS GARCIA - M35
MARCEL GARCIA COROMINAS - M21, M22, M43, M44
RAUL GARCÍA SANJURJO - M25, M45, T11, T12
ATTILA PETER HUSAR - T21, T22, T23, T24
ALEJANDRO MARTINEZ ALEGRE - M23, M24
ROGER MAYNOU GIL - T23, T24
RAUL OLEGARIO NAVARRETE ROMERO - T13
RICARDO JAVIER PRINCIPE RUBIO - M11, M12, M13, M14
CARLOS RUIZ MOYA - M21, M22, M23, M24, M25, M31, M32, M33, M34, M35, M41, M42

Segon quadrimestre:
ALBERTO ANTONIO CARBO BECH - M11, M12, M13, M14, M15, M21, M22, M23, M24, M25
JOSE ALEJANDRO CARRILLO CORTES - T21, T22, T23, T24
DAIBEL DE ARMAS ORAMAS - T13, T14
JOSE IGNACIO ESEBERRI PIEDRA - T23, T24
MARCEL GARCIA COROMINAS - M23, M24
ATTILA PETER HUSAR - T11, T12, T13, T14
ALEJANDRO MARTINEZ ALEGRE - M13, M14
REYNA MERCEDES PEÑA AGUILAR - T11, T12
RICARDO JAVIER PRINCIPE RUBIO - M11, M12, M13, M14, M15
CARLOS RUIZ MOYA - M11, M13, M14
TÀNIA TORM OBRADORS - M12, M15, M21, M22, M25
DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
2. Understand the basic principles of fluid mechanics and its application to problems in the field of engineering. Calculate the parameters of ducts, channels and fluid systems.

Transversal:
1. TEAMWORK - Level 2. Contributing to the consolidation of a team by planning targets and working efficiently to favor communication, task assignment and cohesion.

TEACHING METHODOLOGY

The subject will be developed using master classes to present the contents to the students. The students will have to do individual work for problem solving and test preparing, and also team work for lab experiences and complex problem solving.

LEARNING OBJECTIVES OF THE SUBJECT

Giving the students the knowledge and basic skills on this subject in order to prepare him for professional tasks related to the contents of it, and at the same time encouraging the training and learning processes in the field of fluid mechanics engineering.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group</td>
<td>45,0</td>
<td>30.00</td>
</tr>
<tr>
<td>Hours small group</td>
<td>15,0</td>
<td>10.00</td>
</tr>
<tr>
<td>Self study</td>
<td>90,0</td>
<td>60.00</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

Description:

Specific objectives:
Understanding the basic concepts of fluid mechanics. Identifying different kinds of problems in fluid mechanics. Applied knowledge of basic fluid properties and the influence of viscosity on friction in fluid flow.

Full-or-part-time: 21h 30m
Theory classes: 7h 30m
Laboratory classes: 1h
Self study: 13h
2. Hydrostatics.

Description:

Specific objectives:
Achieving the capacity to determine the pressure distribution in a still fluid, to calculate hydrostatic forces over flat and curved submerged surfaces and to determine the pressure distribution in fluids in motion as rigid solids.

Full-or-part-time: 18h 30m
Theory classes: 6h 30m
Laboratory classes: 1h
Self study: 11h

3. Basic concepts for flow analysis.

Description:

Specific objectives:
Understanding the use of the material derivative for connecting the Eulerian and the Lagrangian approach, identifying different flow visualization techniques, understanding the use of Reynolds' transport theorem and knowing the differential, integral, experimental and computational techniques used for flow analysis.

Full-or-part-time: 10h 30m
Theory classes: 3h 30m
Laboratory classes: 1h
Self study: 6h

4. Basic integral equations in fluid mechanics (I).

Description:

Specific objectives:
Correctly applying the concepts of compressibility and steadiness in flow determination. Identifying and correctly estimating the different forms of mechanical energy together with the efficiency in their transformations. Correctly using Bernoulli's equation in solving basic hydraulic problems and in velocity and flow rate meters.

Full-or-part-time: 40h 30m
Theory classes: 14h 30m
Laboratory classes: 1h
Self study: 25h
5. Basic integral equations in fluid mechanics (II).

Description:

Specific objectives:
Identifying forces and torques over a control volume. Determine resulting forces due to flow streams. Estimating torques generated by flow streams.

Full-or-part-time: 25h
Theory classes: 9h
Laboratory classes: 1h
Self study: 15h

6. Pipe flow

Description:

Specific objectives:
Solving basic steady state hydraulic problems. Developing basic design tasks for fluid distribution installations and determining the operating point in pumps.

Full-or-part-time: 17h 30m
Theory classes: 6h
Laboratory classes: 1h 30m
Self study: 10h

7. Free surface flows

Description:

Specific objectives:
Solving slow problems in steady state open canals. Using pouring systems for flow control and measurement.

Full-or-part-time: 16h 30m
Theory classes: 5h 30m
Laboratory classes: 1h
Self study: 10h

GRADING SYSTEM

Md-term exam (35%); Homework activities (10%); Final exam (35%); Lab Pràctices (15%); Generic skills (5%). In order to pass the course it is mandatory to attend to all lab practices and deliver the correspondent lab report.
There is a re-avaluaton test for this subject.
The student will be able to access the re-assessment test that meets the requirements set by the EEBE in its Assessment and Permanence Regulations.
EXAMINATION RULES.

The evaluation will be conducted through written test both for the mid-terms and final exam. There will be 3 homework activities due during the term. These activities will be delivered online through the course intranet. Practices will be graded based on a pre-test to be presented before the lab practice start, attendance (mandatory) and lab activity developed, together with the preparation and delivery of lab reports.

BIBLIOGRAPHY

Basic:

Complementary: