
Software Replaceability: An NFR Approach
Lei Zhang Lawrence Chung Jing Wang

Department of Computer Science
The University of Texas at Dallas

{lei74, chung, jwang}@ utdallas.edu

Abstract
Building software systems from components
instead of from scratch is a trend in software
industry world. Software replaceability gains
growing interest recently since the replaceable,
standard components in the marketplace is
claimed as one of the goals and benefits of
components. Treating software components as
fully replaceable units will help CBS
(Component Based System) development and
evolvement dramatically. However, the market
place for replaceable components is still not at
sight due to many reasons. Unlike hardware
system, software replaceability is a more
complicate, flexible and broad concept besides
standardization. In this paper, we will give a
comprehensive definition of replaceability, use
NFR (non-functional requirement) framework to
analyze software replaceability, and illustrate
the NFR approach using a BOM (Bill of
Materials) management system.

I Introduction
Building systems from components presents both
promise and challenges. CBS development can
be treated as a process to assemble the
independent components together to form a
functioning system. NFRs are critical in using or
selecting the components. Software
replaceability is one of the NFRs that gains
growing interest recently since the replaceable,
standard components in the marketplace is
claimed as one of the goals and benefits of
components.

Treating software components as fully
replaceable units will help CBS development and
evolvement dramatically. Replaceable
components are expected because software
system always deals with change. To continue
using existing software, system must manage the
evolution to accommodate the change; the use of
replaceable components is one of the possible
ways to manage the system maintenance and
evolution.

However, the marketplace for replaceable
components is still not at sight due to many

reasons. Unlike hardware system, besides
standardization, we must conquer both technical
and non- technical barriers to realize replaceable
software components.

Replaceability is a more complicate, flexible and
broad concept in software world besides the
simplest scenarios “A substitute B”. It is
necessary to apply methodology to analyze
software replaceability and guide building
replaceable system at the beginning of
requirement phase. In this paper, we will use
NFR framework to analyze software
replaceability. The rest of the paper is organized
as follows. Section 2 is the related work. Section
3 gives a comprehensive definition of software
replaceability and introduces the NFR approach.
In section 4, we illustrate the NFR approach
using a BOM (bill of materials) management
system. Future work and conclusion are
summarized in section 5.

II Related Work
Replaceable unit has different meanings
depending on the perspectives adopted. From the
view of COTS, industrial standardization on a
small number of component frameworks is
demanded [Brown1998]. Popular component
models such as Java Bean, EJB and COM define
mechanisms to help integrate distributed
components, but do little to support or encourage
component as replaceable unit. Although some
successful stories exist, for example, some Java
applications that focus on special domains like
JDBC, JNDC, and JAXP do encourage the
creation of replaceable components
[Seacord1998]. The marketplace for replaceable
components is still not at sight.

Replaceable component is hard to achieve due to
many reasons. Missing, insufficient,
incompatible standards make replaceable
unrealistic. Using software patents to support the
business models of software component and
suppress multiple standards caused by
hypocritical marketing strategies may help
compatible standardization, but this is a long
way to go [Guntersdorfer2000]. Moreover, It’s

difficult to identify and quantify the exact
economic cost and benefit derived from the
development of replaceable components. The
component providers may resist the emergence
of replaceable component market since
component substitutability means price
competition, which is not the interest of software
product vendors. [Wallnau1999]

Simple plug-in component is an ideal scenario.
However, modification to the replaceable
component or system is required more or less
when the new component is integrated into
system. Evaluating the similarity of relative
components and the effort of modification is a
necessary and nontrivial work. Component has a
lot of characters. [Yacoub1999] Based on the
component’s three important internal characters
(structure, behavior, and granularity), a metric
(DRD---Directed Replaceability Distance) is
designed to represent how different two
components are in the case the system
requirements are the same before and after
replacement. And this me0tric is used in the
component search engine RetrivalJ.
[Washizaki2002]

III Software Replaceability---an NFR
Approach
3.1 Motivation
Building software system by combining existing
pieces of software rather than build-from-scratch
is claimed as a goal of component engineering
and future breakthrough in software
development. System must accommodate change
and keep pace with future technology
improvement after deployment. For example,
components can become obsolescent, developers
may choose components from different vendors,
software system or component can have variable
usage, and the system running environment,
dependencies, requirements also change from
time to time. Therefore, maintaining and
evolving the system with component substitution
is a necessary and important issue for CBS. The
CBS should be designed in a way that the
component can be isolated and are replaceable.
To achieve this goal, we will use NFR
framework to guide requirement analysis and
architecture design.

3.2 Replaceable Software Component
The replaceability paradigm implies two aspects,
the engineering of replaceable components, and

the engineering of system by using the
replaceable components.

Component is subject to composition by third
parties. Composition means the component is
developed by integrating and using service
provided by previous components. Therefore, a
component can encapsulate and describe other
components that in turn can be embedded by
other larger components. The composition
hierarchy can be nested up to any arbitrary level.
A component-based system is built on top of
low-level components recursively and can be
viewed as the root element of the composition
hierarchical structure.

A replaceable component is a conceptual
independent part that can be added, deleted,
modified or substituted. It can be the entity in
any hierarchical level. That is, a replaceable
component can be a single interface, a single
class, a multi-class modular or a whole system.

According to whether the system’s functionality
will be affected by replaceable components, we
classify the replaceable components into two
cases. Both cases can be found in the illustration
system.

Case 1: Homogeneous replaceable components
Replaceable components are used to maintain the
system’s functionality while running
environment change, vendor change, or
technique advance. For example, a set of
components for sorting.

Case 2: Heterogeneous replaceable components
Replaceable components are used to
accommodate the functional requirements
change. System will provide different or
extensive functionality after component
substitution. For example, the components used
to present data file in different format.

3.3 Software System Replaceability
In this paper, we define replaceability as the
ability of system to substitute some composite
components to accommodate change with
reasonable effort.

More specifically, the component (C) of a
software system (S) can be substituted by a new
component (C’) and results in a new system (S’).
The effort for the replacement must be
reasonable (effort< MaxEffort, the MaxEffort is

the maximum threshed value defined by project
manager.)

The replacement is caused by change (δEnv)
from old environment (Env) to new environment
(Env’) or by change (δReq) from old
requirements (Req) to new requirements (Req’).

Each component should satisfy a small part of
overall requirements under its dependencies
(Match(R, C, E)). When change happens, new
component is integrated into the system to
satisfy the new requirements or adapt to the new
environment (Match (R’, C’, E’)) (See Figure 1).

To discuss system replaceability, we need
consider following major tasks:
1. The ability to identify change.
 (δEnv>0∨ δReq>0)
2. The ability to trace the change to appropriate

components.
3. The ability to search, identify and evaluate

the candidate components for replacement
that may accommodate the change. If
C’∈S’, can Match(R’, C’, E’) hold? Is the
modification effort needed for replacement
acceptable?

We will show how to perform these tasks using
NFR approach in the following section.

3.4 NFR Approach
In our research, NFR framework is the
methodology that guides system to accommodate
change with replaceable components. NFR
framework is a goal-oriented and process-
oriented quality approach guiding the NFRs
modeling. Non-functional requirements such as
security, accuracy, performance and cost are
used to drive the overall design process and
choosing design alternatives. It helps developers

express NFRs explicitly, deal with them
systematically and use them to drive
development process rationally. [Chung2000]

In the NFR Framework, each NFR is called an
NFR softgoal (depicted by a cloud), while each
development technique to achieve the NFR is
called an operationalizing softgoal or design
softgoal (depicted by a dark cloud). Design
rational is represented by a claim softgoal
(depicted by a dash cloud). Each softgoal has a
name following the convention Type [Topic1,
Topic2, …], The goal refinement can take place
along the Type or the Topic. These three kinds of
softgoals are connected by links to form the
softgoal interdependency graph (SIG) that
records the design consideration and shows the
interdependencies among softgoals.

In this paper, software replaceability is the NFR
encapsulated in the whole design process. We
will use following major steps to show how
software system encapsulate software
replaceability in the requirement and design
phase and how to identify replaceable
components to accommodate the change.

1. Develop the NFR softgoals and their

decomposition based on the replaceability of
the concrete system.

2. Develop design softgoal alternatives based
on the knowledge of development
techniques.

3. Analysis design tradeoffs and rational.
4. Develop critical goals; document the

rational with claim goal.

In this step, the potential change should be
identified and associated with corresponding
NFR softgoal. The NFR softgoal will be
marked as critical. Sometimes, the SIG will
be revised to reflect the change.

R1 Requirements

 R2 R3

C3 C1 C2 S

δEnv>0∨ δReq>0

Figure 1

R1 Requirements

 R2 R’3

C’3 C1 C2 S’

∃C∈S ∃R∈Req ∃E∈Env Match(R, C, E) ∧ (δEnv>0∨ δReq>0)
 → ∃C’∈S’ ∃R’∈Req’ ∃E’∈Env’ Match(R’, C’, E’) ∧ (C ≠ C’) ∧ effort < MaxEffort

Certain functions of a software system are
subject to frequent change on the basis of
the business needs. Some system services
such as database engineering will only be
modified by vendors as COTS component
upgrade. Other services are frequently
changed by the ender users, such as an order
processing system must respond to a
customer order differently depending on the
actual product request. The developer must
understand which functionality would like to
be changed, which service will actually be
changed and changed by who during the
lifecycle of the system.

5. Identify replaceable components, evaluate

and select alternatives.

The NFR framework provides clear
traceability from requirement to design. By
analyzing the impact of change on the
system, the critical goal identified in step 4
can be traced to corresponding design
softgoal. Moreover, Using SIG, the
candidate design softgoals for replacement
can be identified and isolated by searching
the offspring node or sibling node. Then, the
design softgoal will be mapped to
components of solutions considered for the
target system by searching, matching and
selecting from repository. A goal-oriented
process model that explicitly supports the
selection and integration of COTS
components with NFR framework is
presented in [Chung 2003a], [Chung2003b].

Other necessary activities include identify
the significant dependencies of replaceable
component among other components,
analyzing the significant difference among
suitable components, determining the effect
that replaceable software component will
have on the system’s behavior, evaluating
the effort request for the replacement.

The steps in the entire process are interleave and
iterative. A SIG will be generated by carrying
out these steps. In section 4, a BOM system will
be analyzed by complying above steps.

IV Illustration
4.1 BOM Management System
BOM (Bill of Materials) identifies and lists all
components, assembles, sub-assemblies, parts
and raw materials that contribute to the end
product. It is one of the necessary parts of

Material Requirement Planning (MRP). A BOM
may be in a tree form (See Figure 2), or in a
printed indent document (e.g. excel)

The BOM encapsulates design knowledge and
history of the product. It supports not only
production but every supplier’s activity like
manufacture, purchasing, accounting,
engineering, technical writing and marketing.
The BOM management system must accomplish
two important tasks.

•The data content and structure of BOM
undergoes constant change. It’s important that
the process of updating the BOM should be as
straightforward and automatic as possible. The
change of the BOM should be in time and
consistent in the entire enterprise. (Data
consistence) For example, a frame may add to
the “Knife Set”; all departments from sales to
accounting must update the information
immediately and consistently.

•The portions of BOM typically will be shared
by different departments across the entire
enterprise, Different pieces of its content are
critical to different departments in quite different
ways. So the problem is how to expose, extract
and present those various items of BOM
knowledge in highly specialized way. (Data
access) For example, “revision code” records the
information about product quality; it may only
viewed by manager and quality assurance
department.

One possible implementation of the BOM
system is to represent the BOM with well-
formed XML file (See Figure 3, 4). The “Data
Producer” gets raw product design data from
product manager and generates XML file, then
save the file. The “Data Consumer” can be any

Figure 2: A kind of BOM format

Knife set

Gift box (1) Knife (4)

Blade(1) Handle (1) Rivet(3)

Wood Block(1) Bronze deco (1)

application (such as order processing, inventory
control, accounting, and so on) that requests
BOM information. The “data Processor” is the
subsystem that really accesses the BOM file; it
processes the XML data according to the
applications’ requirements and provides the data
to various applications. All these subsystems can
reside in same or different domain. The XML
solution doesn’t require radical data conversion,
only a straightforward change in already
structured data.

4.2 Apply NFR Approach
4.2.1 Develop the NFR Softgoals and Their
Decomposition
The NFR softgoal decomposition shown in top
part of Figure 5 is refined by following way. The
BOM management system consists three major
modules, we “OR” decompose the top goal
(Replaceable [BOM]) into three subgoals via
subsystem. (Replaceable [Data Producer],
Replaceable [Data Processor], Replaceable [Data
Consumer]). In data producer modular, the
product designer use human-computer interface

(HCI) to input raw data of BOM file, then a
XML generator should transfer the raw data into
XML file and save the file into database. So the
subgoal Replaceable [Data Producer] can be
further refined into two subgoals. (Replaceable
[HCI], Replaceable [XML generator].

The data processor module can perform two
different tasks: data transformation and data
validation, so the subgoal Replaceable [Data
Processor] can “OR” refine to two subgoals

(Replaceable [Data Transformation],
Replaceable [Data Validation]). Data
transformation can have different types, this is
why the subgoal Replaceable [Data
Transformation] further “OR” refines to
Replaceable [Presentation Transformation],
Replaceable [Content Transformation] and
Replaceable [Format Transformation]. The
data consumer modular relates to various
business application of BOM. The
decomposition requires detail business domain
knowledge. We didn’t go further in this part
right now.

4.2.2 Develop the Design Alternatives
The development techniques are represented as
design softgoals (the dark cloud) in the bottom
part of Figure 5. Human-computer interface for
the data producer will be provided by the GUI
technique. However, different front-end exists to
realize the GUI, so the design softgoal
Replaceable [GUI, PL] can be refined into three
subgoals---Replaceable [Win Form, PL],
Replaceable [Web Form, PL], Replaceable[XML
editor, PL]. Moreover, the program language
(PL) used to implement the GUI can always
replaceable according to the enterprise platform
and available resource, the look and feel of the
GUI are also replaceable according to the user
preference. Therefore, further refinement to these
subgoals are possible and useful based on
requirements.(Further refinement is not shown in
this graph.) The functionality of GUI is to get
input from users; the functionality of XML
generator is to transfer raw data into XML file.

<item>
 <itemno>000-000-0010</itemno>
 <desc>the gift box </desc>
 <itemlevel>1</itemlevel>
 <quan>1.00</quan>
 <rev>A1</rev>
 <leaf>yes</leaf>
 <parent>00</parent>
</item>
<item>
 <itemno>614-000-0100</itemno>
 <desc>a set has four knives</desc>
 <itemlevel>1</itemlevel>
 <quan>4.00</quan>
 <rev>B1</rev>
 <leaf>no</leaf>
 <parent>00</parent>
</item>
……

Figure 4: Part of BOM XML file for the product knife set

User Application

Data Producer

Data Processor

User Application

DB InternetXML Data ConsumerXML

Figure 3: An overview of BOM system

Their alternatives are the examples of
homogeneous replaceable components.

As for the data processor, current techniques to
manipulate XML data have XSLT, XSL_FO,
XPath, DOM, and SAX. (The XML technique is
still evolving). The replaceability depends on
the concrete system requirements and
environments. However, DOM and SAX are
standard interfaces that can always be
implemented with multiple ways and multiple
programming languages. The uniform interface

supports replaceable components by giving the
system freedom to choose different

implementation techniques based on distinguish
resource constraints.

4.2.3 Analysis Design Tradeoffs and Rational
Some XML techniques have crosscutting
functionality but will affect system’s non-
functional aspects or more suitable in certain
environment. This difference provides a rational
for choosing design alternatives. In Figure 5, we

 Time-critical
 [BOM]

Performance [BOM]

 Consumedby
[application]

Replaceable [BOM]

 Replaceable
[HCI]

 Replaceable
 [Xml generator]

Replaceable
[Transformation]

 Replaceable
[Presentation
Transformation]

 Replaceable
 [Content
Transformation]

Replaceable
 [Format
Transformation]

 Replaceable
[XML Editor, PL]

 Size-Sensitive
[BOM]

!

Replaceable
 [Validation]

 XSLT
[Transformation]

 DOM
[Transformation, PL]

 Replaceable
[GUI, PL]

 XSL_FO
[Format
 Transformation]

 DOM
[VB.NET] DOM [C#]

Claim 1

 Replaceable
[Data Processor]

 Replaceable
[data consumer]

 Replaceable
[Data Producer]

SAX
[Transformation, PL]

SAX [C#] SAX [Java]

Claim 1: expose, extract and present those various item of BOM knowledge in highly specialized way

Figure 5: SIG for BOM system

 Replaceable
[Win Form, PL]

 Replaceable
[Win Form, PL]

Help contribution
Hurt contribution

 ! Critical goal NFR softgoal Design softgoal Claim softgoal

XSLT
[WAP]

XSLT
[IE]

use “performance” as a rational to compare SAX
and DOM.

4.2.4 Develop Critical Goal
The task of this step is to identify the important
potential change, associate the change with
softgoals and mark them as critical. According to
the requirements of BOM system mentioned
before, “The BOM system must expose, extract
and present those various item of BOM file to
different users in highly specialized way.” the
softgoal Replaceable [Data Transformation] is
marked as a critical goal and the rational is
documented with the claim goal (a dash cloud).

4.2.5 Identify Replaceable Components
The NFR softgoal Replaceable [Data
Transformation] can be traced to design softgoal
XSLT [Transformation]. When change of
presentation is required, for example, same BOM
data should be displayed in different ways based
on platform-dependency, we can search the
offspring nodes for the alternative development
techniques. If the server detects the end user is
WAP-compatible device, it will send following
page card (Figure 6) to the device using XSLT
[WAP]. If the server detects the end user is IE
5.0 or IE 6.0, it will present the table (Figure 7)
by replacing the XSLT [WAP] with XSLT [IE].
These components for data transformation
produce different output with same input (BOM
file). They are the examples of heterogeneous
replaceable components.

Another example is about “Data Content
Transformation”. Both DOM and SAX can be
used to retrieve part of the XML data. They are
siblings in the SIG. SAX is efficient for
retrieving small amounts of information. While
DOM is used, the whole XML files should be
loaded into the memory, when the size of the
XML file is large, it has high memory space
request. So the system can adopt the
corresponding technique according to the
environment and resources constraints (such as
high performance vs. memory conservative
parser). Since DOM and SAX are standard

interfaces, multiple implementations are always
possible and replaceable. We can search the
offspring for the design softgoal with preferred
program language as part of its topic and map the
design softgoal to concrete XML parser.

V Conclusion and Future Work
Replaceable component is an effective way to
modify the system to adapt to change. During
CBS development and evolvement, the
possibility of current composite components to
be replaced by new ones without much
modification to the system or the new
components is an important issue that need be
addressed. With NFR framework, the
replaceability is treated as a NFR that can guide
whole software engineering process, including
requirement, component selection, architecture
design, implementation, maintenance and
evolution.

In this paper, we first gave a comprehensive
definition of replaceability, then introduced the
NFR approach for replaceability analysis. In the
illustration section, we constructed a SIG for the
BOM management system from the view of
replaceability, showed how to identify the
critical softgoal through SIG and trace it to
design alternatives. Finally, we explored the
replaceable design techniques and make the
trade-off analysis.

Replaceability is a NFR relating to the whole
system, although our research focused on
replaceable components in that phase, we should
not limit the scope only to components. The
concept of replaceable will be extended to all
constituents of the system architecture in the
future (component, connection, constraint, style
and pattern.)

Figure 6: One card for WAP compatible device

Figure 7: A table format for IE

Also in our future work, we will analysis the
attributes contribute or damage software
replaceability. Software replaceability will also
be used as a rational to guide the design and
development of software architecture supporting
replaceable constituents. The correlation of
replaceability with other NFRs such as
performance, extensibility, modifiability, and
adaptability will also be a direction of future
work.

Reference
[Brown1998] Brown, W., and Wallnau, K., “the
current state of CBSE”, IEEE Software, October
1998, pp37-46.

[Chung2000] Chung, L., Nixon, B. A., Yu, E.
and Mylopoulos, J., Non-Functional
Requirements in Software Engineering, Kluwer
Academic Publishers, Boston, 2000.

[Chung2003a] Chung, L., Cooper, K., "Defining
Goals in a COTS Aware Requirements
Engineering Approach", submitted to Systems
Engineering

[Chung2003b] Chung, L., Cooper, K.,
"Architecting Adaptable Software Architecture
Using COTS: An NFR Approach," Proc., Int.
Conf. on Software Engineering Practice and
Research (SERP'03), June, 2003, pp. 155-161.

[Guntersdorfer2000] Guntersdorfer, Michael
et.al , “ Using Software Patents to Support the
business Model of Software Components. ICSE
workshop, 2000.

[Lamsweerde2000] Axel van Lamsweerde,
“Goal-Oriented Requirements Engineering: A
Guided Tour”, Proc., Fifth IEEE International
Symposium on Requirements Engineering, Aug.
2001.

[Seacord1998] Seacord, Robert C., Wrage, L.,
Replaceable Components and the Services
Provider Interface, Technical Note, CMU/SEI-
2002-TN-009.

[Szyperski1998] Szyperski, C. Component
Software, Beyond Object-Oriented
Programming. Addison-Wesley and ACM Press,
1998.

[Wallnau1999] Kurt C. Wallnau, “On Software
Components and Commercial ("COTS")
Software”, ICSE, 1999.

[Washizaki2002] Washizaki, H., Fukazawa, Y.,
“Retrieving Software Components Using
Directed Replaceability Distance”, OOIS 2002,
pp298-310.

[Yacoub1999] Yacoub, S. “Characterizing a
Software Component”, International Workshop
on Component based Software Engineering,
1999.

