

Guía docente 370512 - MATERIALS - Materiales Ópticos

Última modificación: 03/06/2021

Unidad responsable: Facultad de Óptica y Optometría de Terrassa **Unidad que imparte:** 713 - EQ - Departamento de Ingeniería Química.

Titulación: GRADO EN ÓPTICA Y OPTOMETRÍA (Plan 2009). (Asignatura obligatoria).

Curso: 2021 Créditos ECTS: 6.0 Idiomas: Catalán, Castellano

PROFESORADO

Profesorado responsable: PERE GARRIGA SOLÉ (http://futur.upc.edu/PereGarrigaSole)

Otros: Tzanov, Tzanko (http://futur.upc.edu/TzankoTzanov)

PERE GARRIGA SOLÉ (http://futur.upc.edu/PereGarrigaSole)

CAPACIDADES PREVIAS

Química: formulació y bases elementales de química orgánica e inorgánica. Equilibrio químico y electroquímica. Funciones orgánicas.

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

- 1. Discernir entre las particularidades de los materiales y diseños de los diferentes tipos de lentes oftálmicas (incluyendo prismas y filtros) y monturas, y entender los principios básicos de los sistemas ópticos y no ópticos que se utilizan como ayuda en baja visión.
- 2. Manejar material i técnicas básicas de laboratorio. Ser capaz de tomar, tratar, representar e interpretar datos experimentales.
- 3. Ser capaz de realizar búsquedas bibliográficas.
- 4. Ser capaz de relacionar la estructura con las propiedades de los compuestos inorgánicos, orgánicos y biomoléculas.

Genéricas:

- 5. Adecuación de todos los ámbitos de la actividad profesional en relación con aspectos compatibles con el medio ambiente (reciclaje, reutilización de los materiales,...)
- 6. Comunicar de forma coherente el conocimiento básico de optometría adquirido. (Explicar oralmente y por escrito los conocimientos básicos adquiridos)
- 7. Desarrollar empatía hacia las personas
- 8. Interpretar y utilizar el lenguaje no verbal
- 9. Emitir opiniones (valoraciones) informes y peritajes
- 10. Ser capaz de participar en grupos de trabajo de carácter pluridisciplinar, multicultural y multilingüe
- 11. Ser capaz de organizar el trabajo de un grupo de personas para conseguir un objetivo previamente determinado dentro de los plazos previstos
- 12. Analizar y relacionar los conocimientos y las habilidades adquiridas.
- 13. Ser innovador y emprendedor
- 14. Valorar la adquisición de los objetivos propuestos en el curso.
- 15. Situar la información nueva y la interpretación de la misma en su contexto.
- 16. Incentivar el trabajo metódico, riguroso, constante y innovador
- 17. Valorar los métodos utilizados para conseguir los objetivos propuestos.
- 18. Trabajar con constancia, metodología y rigor.
- 19. Reflexionar y ser capaz de hacer una crítica de los conocimientos y habilidades desarrolladas y el nivel de consecución.

METODOLOGÍAS DOCENTES

Fecha: 14/08/2021 **Página:** 1 / 5

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

Al acabar la asignatura Materiales Ópticos, el estudiante tiene que ser capaz de:

- 1. Conocer la estructura de los materiales inorgánicos y orgánicos utilizados en la fabricación de lentes oftálmicas y de contacto.
- 2. Conocer las propiedades físicas y químicas de los materiales utilizados en óptica y optometría.
- 3. Relacionar las propiedades físico-químicas de las lentes de contacto y la estructura de los materiales utilizados en su fabricación.
- 4. Conocer los materiales utilizados en las monturas orgánicas y metálicas.
- 5. Conocer las disoluciones de mantenimiento y limpieza y adaptarlas a las características lenticulares y oculares.
- 6. Tomar contacto con la comercialización de los productos, almacenaje, conservación e información.
- 7. Conocimiento y aplicación práctica de los principios y metodologías de la Óptica y de la Optometría, así como la adquisición de habilidades y competencias descritas en los objetivos generales de la titulación.

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas grupo mediano	32,0	24.24
Horas aprendizaje autónomo	84,0	63.64
Horas grupo pequeño	16,0	12.12

Dedicación total: 132 h

Fecha: 14/08/2021 **Página:** 2 / 5

CONTENIDOS

1. MATERIALES INORGÁNICOS. VIDRIO INORGÁNICO

Descripción:

Primero se hace una presentación de la asignatura en la que se habla a los estudiantes de los objetivos de la asignatura, el programa de las clases de teoría, seminarios y prácticas. Se indica el sistema de evaluación y como se hará la comunicación profesores - estudiantes para que éstos obtengan toda la información sobre la asignatura.

En este contenido se trabaja el

Tema 1: Estado vítreo

- Definición y clasificación de los vidrios minerales.
- Composición y estructura de los vidrios de óxido.
- Vitrificación.

Tema 2: Propiedades físicas

- Propiedades térmicas y viscosidad.
- Densidad.
- Propiedades ópticas. Espectros de absorción y transmisión.

Tema 3: Propiedades mecánicas y químicas

- Propiedades elásticas del vidrio.
- Resistencia mecánica.
- Resistencia química. Mecanismos de ataque.
- Parámetros que influyen en el ataque químico.

Tema 4: Propiedades físico-químicas y superficiales de los vidrios

- Formación y estado de la superficie del vidrio.
- Propiedades físico-químicas de la superficie del vidrio.
- Modificaciones de la superficie. Tratamientos superficiales.

Tema 5: Fabricación de vidrio

- Fabricación de vidrio plano
- Fabricación de vidrio para gafas
- Recuit del vidre

Tema 6: Vidrios para aplicaciones ópticas y oftálmicas

- Clasificación del vidrio óptico.
- Vidrio oftálmico.
- Filtros ópticos, vidrios de color y espejos.
- Vidrios fotosensibles y fotocromáticos.
- Aplicaciones ópticas recientes.

Tema 7: Monturas metálicas

- Metales y aleaciones utilizados en monturas
- Corrosión de los metales y su protección
- Aleaciones con memoria de forma.

Fecha: 14/08/2021 **Página:** 3 / 5

2. MATERIALES ORGÁNICOS. VIDRIO ORGÁNICO

Descripción:

En este contenido se trabajan:

Tema 8: Definiciones, clasificación y síntesis de los polímeros

- Macromoléculas, polímeros y plásticos.
- Clasificación de los polímeros según: origen, forma, reacción de obtención, propiedades físicas y naturaleza de los monómeros.
- Síntesis de polímeros: poliadición y policondensación.
- Fases de la reacción de polimerización, cinética de copolimerización y propiedades de los copolímeros.

Tema 9: Propiedades de los polímeros

- Tipo de enlaces en macromoléculas (covalentes, polares, puentes de H, interacciones de Van der Waals).
- Relación entre la estructura química y las propiedades: termoplásticos, termoestables y elastómeros. Cristalinidad y transparencia.
- Correlación entre las propiedades de un polímero y su unidad estructural.
- Propiedades térmicas, mecánicas y ópticas. Densidad y absorción de agua.
- Modificación de las propiedades con aditivos: colorantes, pigmentos y plastificantes.

Tema 10: Monturas orgánicas

- Materiales termoplásticos: acetato de celulosa y propionato de celulosa, PMMA y poliamida
- Materiales termoestables: resinas epoxi y fibra de carbono
- Aditivos utilizados en la obtención de monturas
- Fabricación de monturas

Tema 11: Materiales para lentes oftálmicas

- Lentes termoplásticas (PC derivado del Bisfenol A, PMMA, Poliestireno, Copolímero PMMA / PS) y lentes termoestables (CR-39 y copolímeros con DAP y dATP).
- Propiedades de los materiales para lentes oftálmicas: dureza, resistencia a la abrasión, índice de refracción y número de Abbe.
- Tratamientos de endurecimiento, antirreflectantes y de coloración de lentes oftálmicas.
- Compuestos fotocromáticos para lentes orgánicas.
- Obtención de lentes oftálmicas.

Tema 12: Materiales para lentes de contacto

- Materiales para lentes de contacto hidrófobas: PMMA, CAB. Lentes de siliconas. Lentes de siloxanil-acrilatos y fluorosiloxanilacrilats.
- Materiales para lentes de contacto hidrófilas. Hidrogeles.
- Propiedades de los hidrogeles: contenido en agua (WC), permeabilidad a los gases (DK), índice de refracción y dependencia entre ellas. Influencia del pH y del% de agente reticulante.
- Hidrogeles de silicona. La lente de contacto idónea y su relación con las propiedades físico-químicas del material.

SISTEMA DE CALIFICACIÓN

La evaluación consisitirá en una sola prueba final (100%) (Derecho a examen).

BIBLIOGRAFÍA

Básica:

- Navarro Sentanyes, A. Materiales ópticos orgánicos: monturas y lentes. Barcelona: l'autor, 2007. ISBN 9788492250851.
- Navarro Sentanyes, A. Materiales ópticos orgánicos. Barcelona: [els autors], 1989. ISBN 8440446195.
- Navarro Sentanyes, A. Materiales ópticos inorgánicos. Terrassa: el Departament, 1997. ISBN 849225081X.
- Navarro Sentanyes, A. Prácticas de materiales ópticos. Terrassa: Cardellach, 1997.
- Crespo M., J.J. [et al.]. Cuestiones de materiales ópticos. Barcelona: els autors, 1998. ISBN 8492250836.

Complementaria:

- Ahluwalia, V.K.; Mishra, A. Polymer science: a textbook. Boca Raton: CRC/Taylor & Francis, 2008. ISBN 9781420068191.
- Pethrick, R. A. Polymer science and technology: for scientists and engineers. Dunbeath: Whittles, 2010. ISBN 9781904445401.

Fecha: 14/08/2021 **Página:** 4 / 5

- Fernández Navarro, José M. El vidrio. 3ª ed. Madrid: Consejo Superior de Investigaciones Científicas: Sociedad Española de Cerámica y Vidrio, 2003. ISBN 8400081587.
- Mari, Eduardo A. Los vidrios: propiedades, tecnologías de fabricación y aplicaciones. Buenos Aires: América Lee, 1982. ISBN 9500066173.

Fecha: 14/08/2021 **Página:** 5 / 5