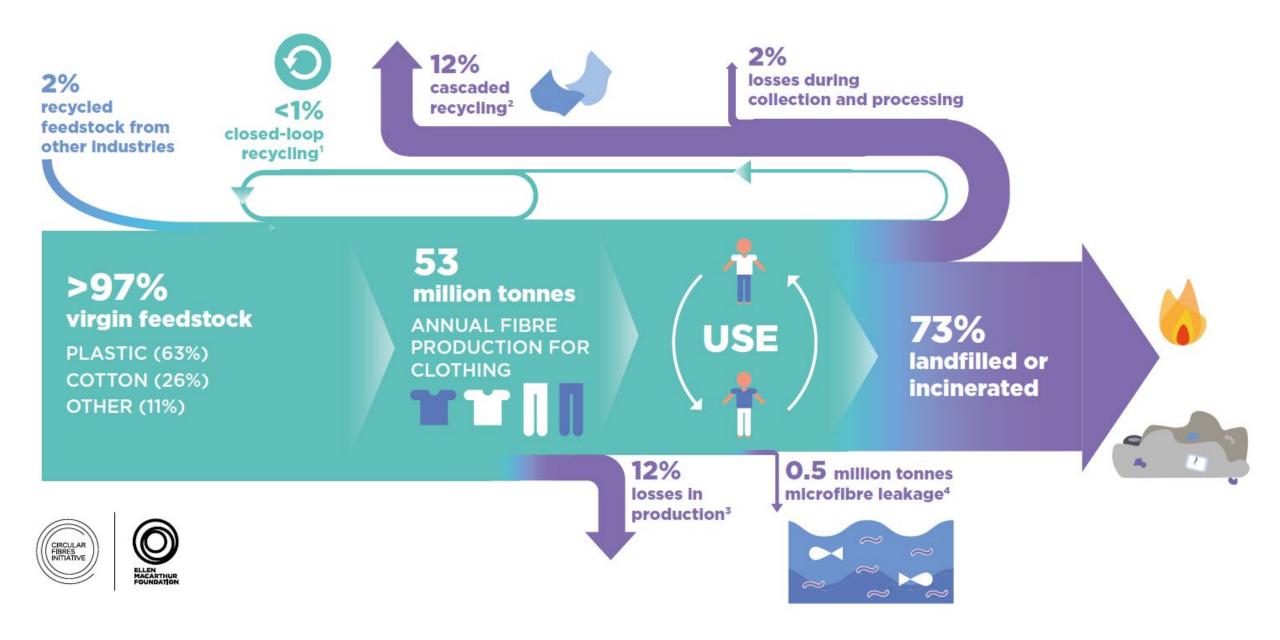
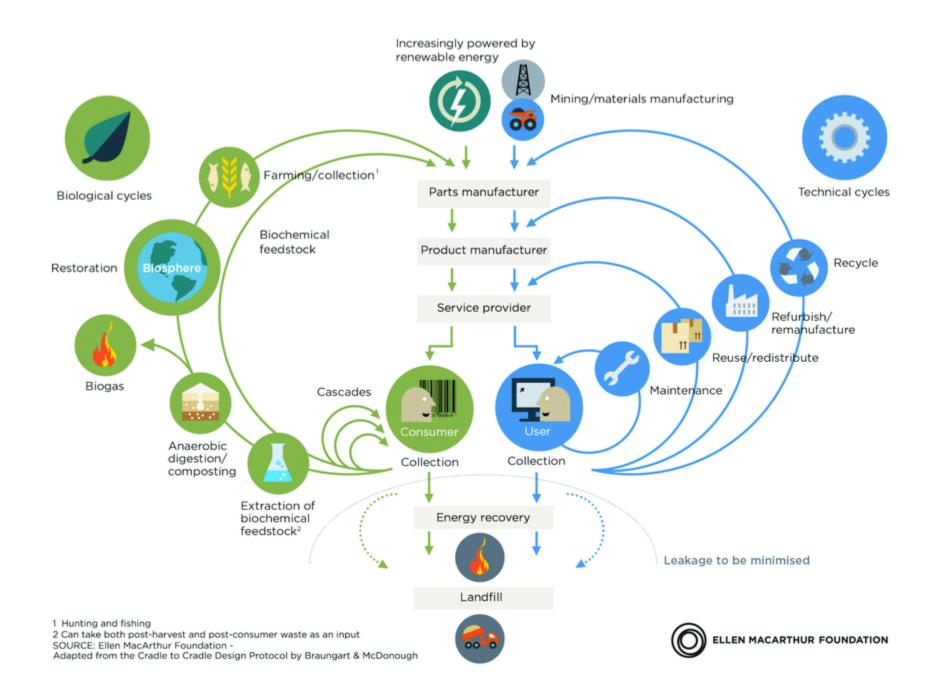


2a Industria textil Jornada y sostenibilidad

Sostenibilidad y economía circular: Oportunidades para incrementar la competitividad del sector textil

Josep Casamada. AEI Tèxtils Ariadna Detrell. AEI Tèxtils





1.200.000.000.000 kg CO2 icada año!

La industria textil es una de las más contaminantes

ECONOMÍA CIRCULAR Y SOSTENIBILIDAD

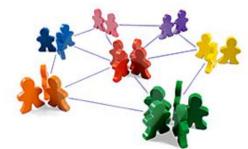
OPORTUNIDAD

Mercados

Materias primas

Modelos de negocio

Clústeres?


"Un clúster es un grupo geográficamente próximo de empresas interconectadas e instituciones asociadas en campos particulares, unidos por puntos en común y complementariedades"

Michael Porter. La ventaja competitivas de las naciones. 1990

Cooperar para mejorar juntos

Clusters?

MAQUINARIA CENTROS FORMATIVOS SERVICIOS Y DE INVESTIGACIÓN CADENA DE VALOR DE LA **EMPRESA ADMINISTRACIÓN CENTROS EDUCATIVOS** PÚBLICA PROVEEDORES DE MATERIAS PRIMAS

Clúster AEI Tèxtils

Geográficamente próximo

Empresas interconectadas e instituciones asociadas

Unidos por puntos en común y complementariedades

Materiales textiles avanzados

Casos prácticos de sostenibilidad y economía circular

HILATURAS ARNAU, SEAQUAL - Economía circular

PACTEX Simbiosis industrial losses during cascad collection and proce recycled recycli Aprovechar las feedstock closed-loop recycling sinergias entre industrias 53 >97 million tonnes virgin feedstoo ANNUAL FIBRE 73% PLASTIC (63%) landfilled or CLOTHING **COTTON (26%)** incinerated **OTHER (11%)** losses in fibre lakage4 Sustitución de sustancias peligrosas ARPE, PACTEX MIDWOR A partir de desperdicios

Eco-diseño
Planificar el ciclo
de vida del
producto

Sustitución de sustancias peligrosas

FLAREX

Problemática general:

Productos químicos peligrosos y futuras restricciones

Necesidad común:

Encontrar alternativas más sostenibles y seguras

Liderazgo mediante clústeres de varios países junto con centros tecnológicos de vanguardia.

Masa crítica

Reducción de costes y riesgos

COORDINADOR

Clústeres asociados

Centros Tecnológicos

Necesidades

REPELENTES AL AGUA Y ACEITES

PFOA, PFOS → considerador "POPs"

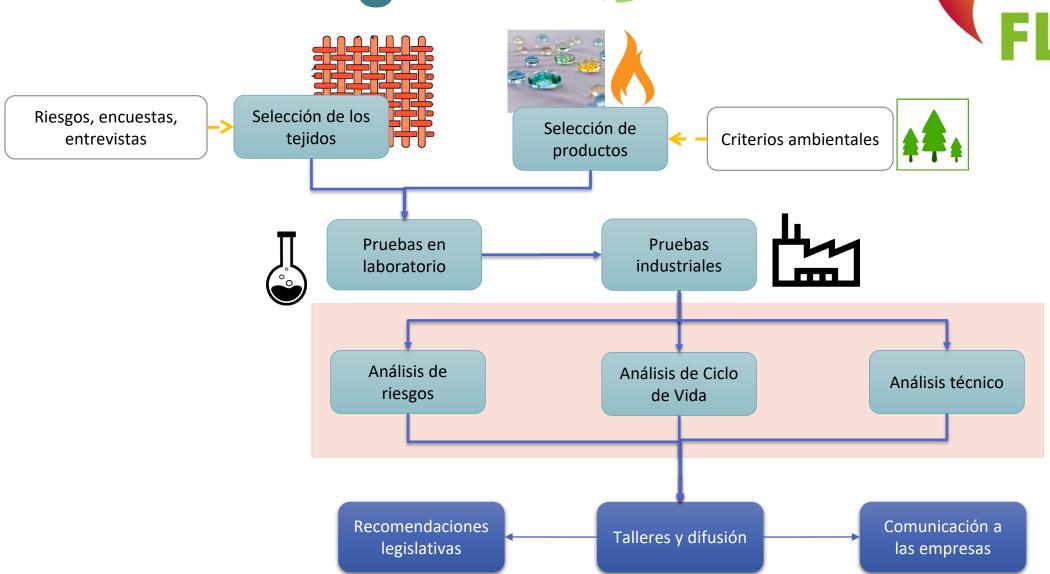
Prohibición en Europa en 2020

Principales sustitutos (C6, C4..) bajo lupa regulatoria

¡Proceso de prohibición inminente!

AGENTES IGNÍFUGOS: RETARDANTES A LA LLAMA

decaBDE→ en proceso de ser "POP"


Prohibición en Europa

Productos halogenados y con antimonio bajo lupa regulatoria

Alternativas inciertas, muchas químicas pero menos eficientes

Metodología

Selección de tejidos

Alfombras: 100% PES No tejido 210 g/m²

Camisetas: 100% PES De punto 175 g/m²

AUTOMOCIÓN

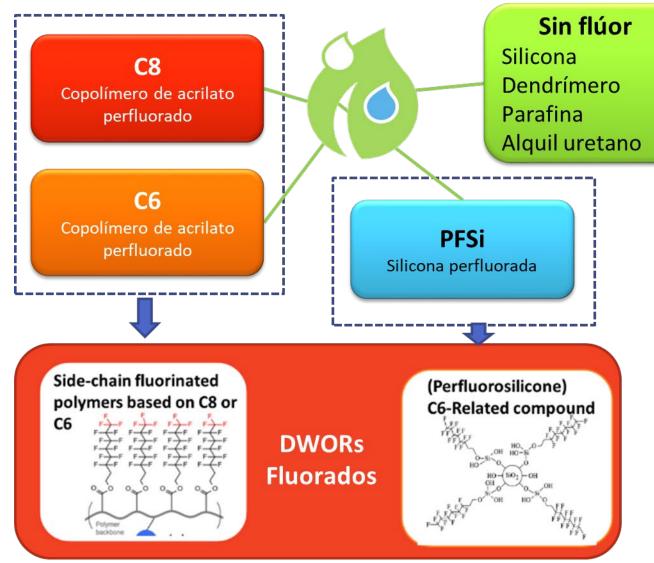
DEPORTE

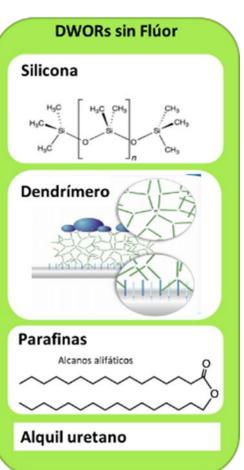
MODA

Trajes: 100% WO Tejido 180 g/m²

LABORAL

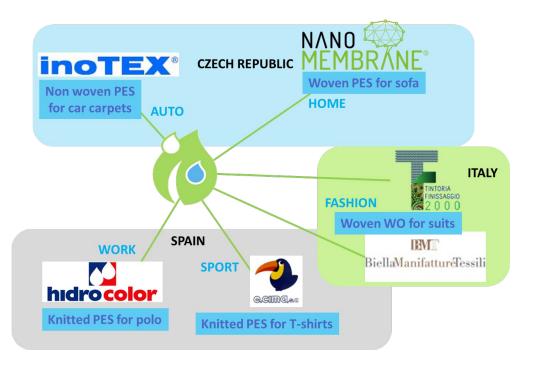
Polo: 100% PES De punto 175 g/m²


HOGAR

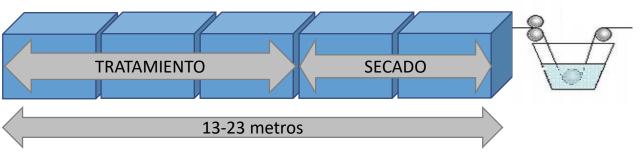


Tapicería: 100% PES Tejido 175 g/m²

Selección de productos

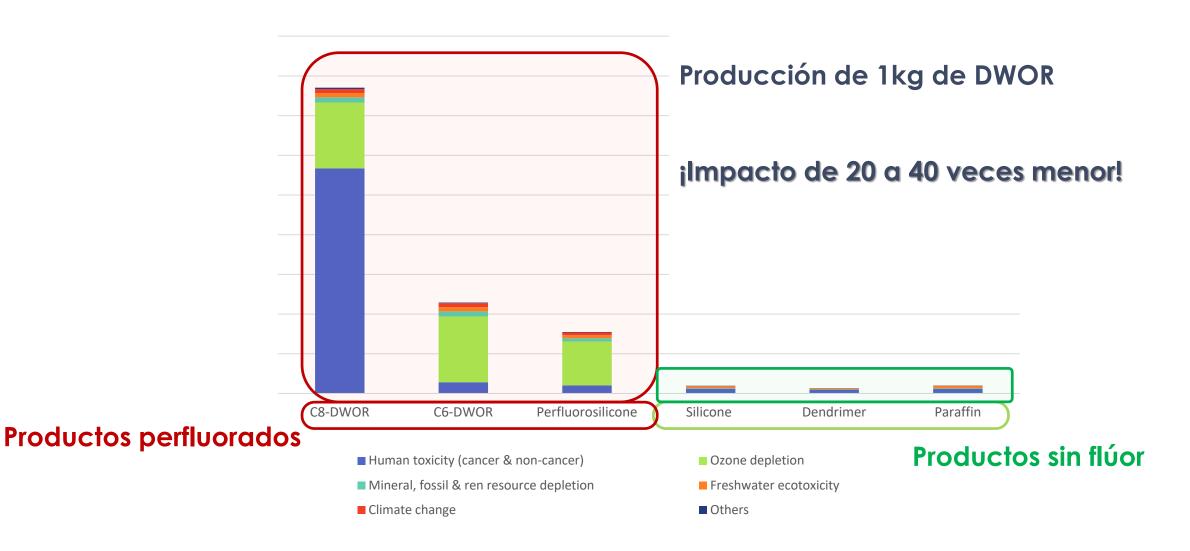


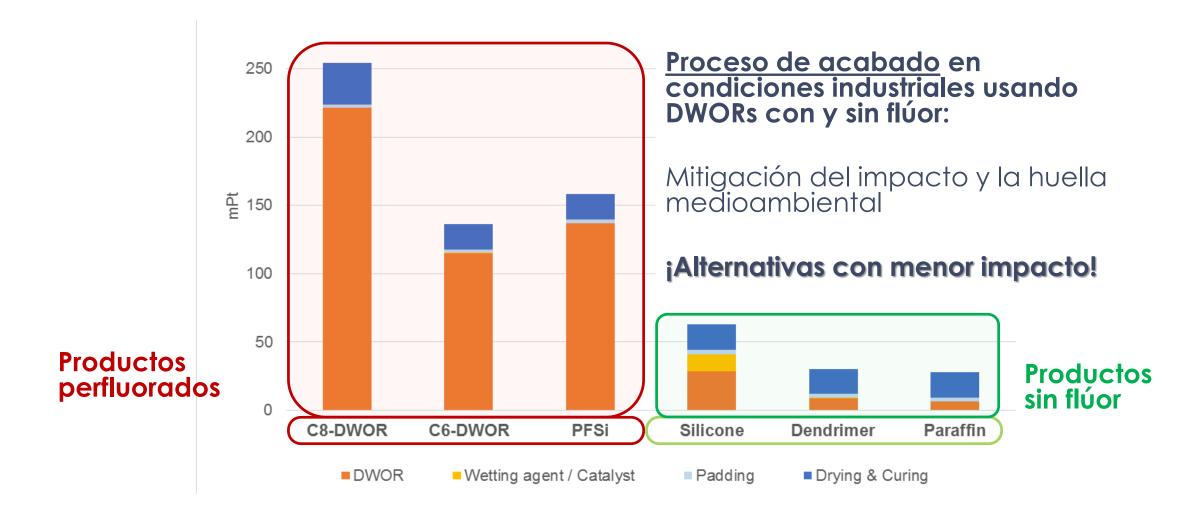
Pruebas industriales



Adquisición de datos (riesgos, ACV)

Validación de resultados técnicos




Impacto ambiental

Impacto ambiental

Resultados técnicos

	DEPORTE
TOMOCIÓN	LABORAL

HOGAR MODA

AATCC 22 UNE EN IS	-		Tela no tejida de poliéster	Tejidos de punto de poliéster	Tejidos de calada de poliéster	Tejidos de calada de lana
Ге	PFCs	C8	3,5	4,5	5	3
		C6	5	4,5	3	3
ia Ba		PFSi	2,5	4,5	4,5	No disponible
len	or	Silicona	3	2	No disponible	No disponible
Repelencia agua	flúc	Dendrímero	2,5	4,5	2,5	2
Re	Sin flúor	Parafina	2	0,5	2,5	2,5
		Alquil uretano	2	2	4,5	No disponible
AATCC 118, UNE EN ISO 14419			Tela no tejida de poliéster	Tejidos de punto de poliéster	Tejidos de calada de poliéster	Tejidos de calada de lana
			policatei	policatei	policatei	lalla
		C8	8	5,5	6,5	0
a a	PFCs	C8 C6	<u> </u>	•	•	
	PFCs		8	5,5	6,5	0
		C6	8 6,5	5,5 5,5	6,5	0 2,5
		C6 PFSi	6,5 6,5	5,5 5,5 5	6,5 2 6	0 2,5 No disponible
ncia ite	flúor	C6 PFSi Silicona	6,5 6,5 0	5,5 5,5 5	6,5 2 6 No disponible	0 2,5 No disponible No disponible
		C6 PFSi Silicona Dendrímero	6,5 6,5 0	5,5 5,5 5 0	6,5 2 6 No disponible 0	0 2,5 No disponible No disponible 0

^{*}Solamente las muestras de las pruebas industriales fueron planchadas En **negrita** se indican los resultados de las pruebas industriales

¿Cambio de paradigma?

La repelencia al aceite solo se consigue con fluorados, pero impacto ambiental es muy elevado.

¿Son realmente necesarios?

Productos alternativos con impacto muy reducido pueden ofrecer repelencia al agua similar a las tecnologías convencionales

ECO-DISEÑO COMO RESPUESTA

Diseño basado en el ciclo de vida del producto

Visión integrada del ciclo de vida

Actuación en origen

Eco-diseño orientado a la economía circular

Ejemplo práctico de Eco-diseño

Eco-diseño de toallas y uso del sistema de devolución

Transformación de toallas fuera de uso fuera en paños de

limpieza

Ejemplo práctico de Eco-diseño

-168 ton CO₂ eq.

sistema takeback

fabricación de ecobayetas

Potencial ahorro de espuma de poliéster

300 kg/año

sistema takeback

reciclado mermas

producción fieltro relleno

Potencial merma material ahorrada

722

m²/año

rediseño patrón

Ejemplo práctico: re-hilado

Reciclaje de hilos técnicos: para-aramidas, PREOX, viscosa, PES...

Socio de:

Eco-diseño promovido por el clúster

Rol: nodo del ecosistema textil innovador en Cataluña

Rol: socio tecnológico Responsable del análisis del ciclo de vida y apoyo técnico

3 Empresas textiles del clúster distribuidas en la cadena de valor

Hilados

Tejeduría I



Acabados

¿Y si vamos más allá del sector textil?

PACTEX: Colaboración entre sectores

2 clústeres: textil y packaging

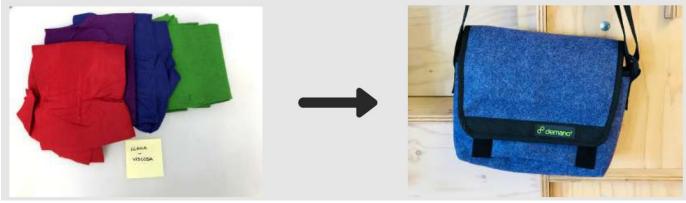
Exploración de posibles sinergias Conectando empresas

Centro tecnológico

Viabilidad económica Eco-diseño Métodos de valorización

10 casos de estudio sobre circularidad entre los sectores textil y packaging

Caso de estudio PACTEX


Valorización

Empresa textilMerma

Empresa textilProducto con valor

Beneficios ambientales

Energia 109.640 MJ

Emissions de CO2 5.008 kg de CO2

Residus

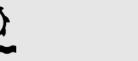
600 kg de retalls de feltre

Caso de estudio PACTEX

Valorización

Empresa textil Merma

Empresa textil Producto con valor


Socio de:

Beneficios ambientales

Energia 45.207 MJ en retalls de teixit de polièster

Emissions de CO2 2.240 kg de CO2

Residus 393 kg de retalls de polièster

Caso de estudio PACTEX

Empresa de packaging Materia prima con valor

Fundir y granular

Energia

586.304 MJ

Emissions de CO2

15.608 kg de CO2

Residus

10,000 kg de fils de PP

De la exploración durante el proyecto PACTEX a un proyecto dedicado para la implementación

Inicio del proyecto en enero 2019

Co-financiado por:

SEAQUALTM Economía Circular

¿Un paso más?

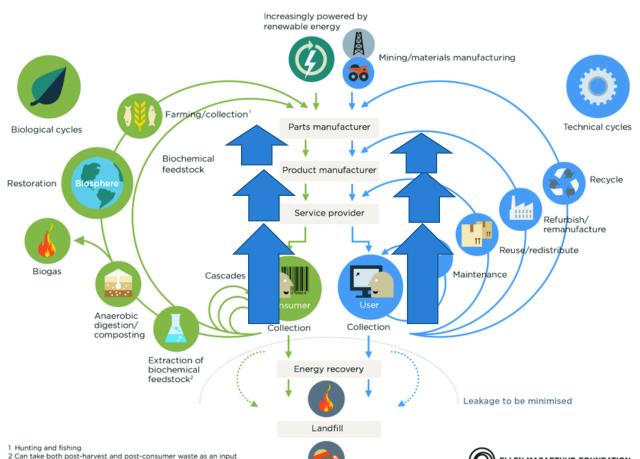
Impulsado por:

OPORTUNIDADES

Empecemos con el diseño

Identificación de la vida útil y el fin de vida del producto

¿Qué haremos cuando no sirva?


¿Realmente necesitamos utilizar productos químicos peligrosos?

¿Cómo optimizamos el proceso?

Eco-diseño

OPORTUNIDADES

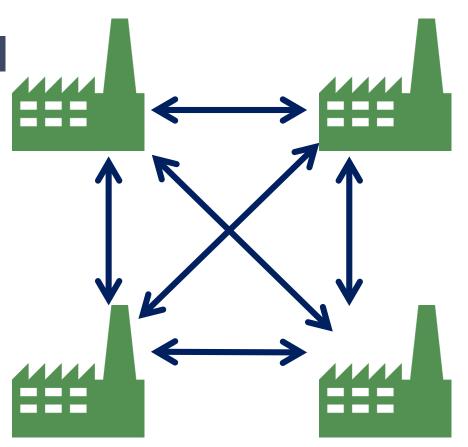
Cooperación en toda la cadena de valor

Se puede generar valor y oportunidades en cada eslabón

Cada residuo o merma puede convertirse en un recurso para otra empresa del sector

SOURCE: Ellen MacArthur Foundation -Adapted from the Cradle to Cradle Design Protocol by Braungart & McDonough

² Can take both post-harvest and post-consumer waste as an input


OPORTUNIDADES

Cooperación intersectorial

Miremos más allá del sector textil:

Simbiosis industrial Simbiosis social Economía circular

Cada residuo puede convertirse en una material prima para otra industria

Gracias por su atención

AGRUPACIÓ D'EMPRESES INNOVADORES

Carretera BV-1274, km. 1, Edifici Nord, Planta 2, Local 22 · E-08225 Terrassa · Spain

Tel.: +34 608 864 754

info@textils.cat

www.textils.cat