Master's degree in Engineering Physics

The master's degree in Engineering Physics (master's degree website) is oriented towards frontier engineering based on advanced education in physics. Specialist engineering fields such as nanotechnology, nanoelectronics and biomedical engineering require an ever-growing number of professionals who have extensive training in advanced physics and sound knowledge of quantum physics, complex system physics and device physics, which can be applied both at the nanoscopic scale and in large-scale facilities.

Applicants must prove that they have a bachelor's degree in Physics or Engineering Physics, or a related degree in Engineering or Basic or Applied Sciences.

GENERAL DETAILS

Duration and start date
One academic year, if starting in September and one and a half academic year, if starting in February, 60 ECTS credits.
Starting February and September

Timetable and delivery
Mornings. Face-to-face

Fees and grants
Approximate fees for the master’s degree, excluding other costs (does not include non-teaching academic fees and issuing of the degree certificate):
€1,660 (€6,331 for non-EU residents).
More information about fees and payment options
More information about grants and loans

Language of instruction
English

Information on language use in the classroom and students’ language rights.

Location
Barcelona School of Telecommunications Engineering

Official degree
Official university degree.

ADMISSION

General requirements
Academic requirements for admission to master's degrees

Specific requirements
Applicants must prove that they have a bachelor's degree in Physics or Engineering Physics, or a related degree in Engineering or Basic or Applied Sciences.

Places
30

Pre-enrolment
Pre-enrolment closed (consult the new pre-enrolment periods in the academic calendar).

How to pre-enrol
Enrolment

How to enrol

Legalisation of foreign documents

All documents issued in non-EU countries must be legalised and bear the corresponding apostille.

PROFESSIONAL OPPORTUNITIES

Professional opportunities

- Industries with a strong technology component.
- Basic and applied research centres.
- Frontier engineering in the field of nanotechnology.
- Research centres and large-scale facilities, as a qualified specialist.
- Doctoral training in research centres and universities.

Competencies

Generic competencies

Generic competencies are the skills that graduates acquire regardless of the specific course or field of study. The generic competencies established by the UPC are capacity for innovation and entrepreneurship, sustainability and social commitment, knowledge of a foreign language (preferably English), teamwork and proper use of information resources.

ORGANISATION: ACADEMIC CALENDAR AND REGULATIONS

UPC school

Barcelona School of Telecommunications Engineering (ETSETB)

Academic coordinator

Pol LLoveras Muntané

Academic calendar

General academic calendar for bachelor's, master's and doctoral degrees courses

Academic regulations

Academic regulations for master's degree courses at the UPC

CURRICULUM

<table>
<thead>
<tr>
<th>Subjects</th>
<th>ECTS credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST SEMESTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atomic and Molecular Physics</td>
<td>4</td>
<td>Optional</td>
</tr>
<tr>
<td>Computational Astrophysics</td>
<td>4</td>
<td>Optional</td>
</tr>
<tr>
<td>Critical Phenomena and Complexity</td>
<td>5</td>
<td>Compulsory</td>
</tr>
<tr>
<td>Numerical Methods for Continuum Systems</td>
<td>4</td>
<td>Optional</td>
</tr>
<tr>
<td>Physics of Materials</td>
<td>4</td>
<td>Optional</td>
</tr>
<tr>
<td>Project Management</td>
<td>3</td>
<td>Compulsory</td>
</tr>
<tr>
<td>Quantum Matter</td>
<td>5</td>
<td>Compulsory</td>
</tr>
<tr>
<td>Surface Engineering and Microdevices</td>
<td>5</td>
<td>Compulsory</td>
</tr>
<tr>
<td>Subjects</td>
<td>ECTS credits</td>
<td>Type</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Biophysical and Materials Science Characterisation</td>
<td>4</td>
<td>Optional</td>
</tr>
<tr>
<td>Complexity in Biological Systems</td>
<td>4</td>
<td>Optional</td>
</tr>
<tr>
<td>Large Facilities: Synchrotron and Neutron Sources</td>
<td>5</td>
<td>Compulsory</td>
</tr>
<tr>
<td>Machine Learning with Neural Networks</td>
<td>4</td>
<td>Optional</td>
</tr>
<tr>
<td>Materials Science of Drugs</td>
<td>4</td>
<td>Optional</td>
</tr>
<tr>
<td>Molecular and Soft Condensed Matter</td>
<td>4</td>
<td>Optional</td>
</tr>
<tr>
<td>Stochastic Methods for Optimization and Simulation</td>
<td>4</td>
<td>Optional</td>
</tr>
<tr>
<td>Master's Thesis</td>
<td>17</td>
<td>Project</td>
</tr>
</tbody>
</table>

August 2024. [UPC](https://www.upc.edu). Universitat Politècnica de Catalunya · BarcelonaTech