Master's degree in Photonics
The goal of the master's degree in Photonics is to provide students with a solid grounding in the various areas of photonics and with the tools they need to become researchers or entrepreneurs in this field. The most important institutions carrying out research in photonics in the Barcelona area, namely, the UAB, the UB, the UPC and the ICFO, participate in this master's degree and offer comprehensive training that covers theoretical and applied topics.

GENERAL DETAILS

<table>
<thead>
<tr>
<th>Duration and start date</th>
<th>One academic year, 60 ECTS credits. Starting September</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timetable and delivery</td>
<td>Afternoons. Face-to-face</td>
</tr>
<tr>
<td>Fees and grants</td>
<td>Approximate fees for the master's degree, excluding other costs, €2,766 (€4,149 for non-EU residents).</td>
</tr>
<tr>
<td></td>
<td>• Telecogresca: 1 scholarship for the 1st.</td>
</tr>
<tr>
<td></td>
<td>More information about fees and payment options</td>
</tr>
<tr>
<td></td>
<td>More information about grants and loans</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Location</td>
<td>From September to December, all courses are taught on the UB (Barcelona) and UAB (Bellaterra) campuses. From December to April, all courses are taught on the UPC’s North Campus (Barcelona). Laboratory practicals, seminars, visits and master’s theses, however, may be carried out at any of the four participating institutions.</td>
</tr>
<tr>
<td>Official degree</td>
<td>Recorded in the Ministry of Education's degree register</td>
</tr>
</tbody>
</table>

ADMISSION

General requirements
Academic requirements for admission to master's degrees

Specific requirements
Students must be in possession of an official University degree in a scientific or technological field corresponding to at least 180 ECTS credits (validated for European students or students from partner countries), in the fields of physics, engineering physics, telecommunications engineering, electrical, mechanical and electronic engineering and optics, or in a related field such as nanoscience and nanotechnology, nanophotonics and bioengineering.

Other qualifications (in chemistry, materials science, biology, etc.) may be considered by the admissions committee, which will recommend specific bridging courses.

Admission criteria
Admission to the master's degree in Photonics is evaluated in view of applicants’ academic records (their academic performance as well as the appropriateness of their qualification). The following aspects will also be considered:
- A letter of recommendation from a person with a scientific or academic background in the field of optics/photonics or a related discipline who has interacted with the student.
- Professional experience in the field of optics/photonics or a related discipline.
- Proof of scientific activity in the field of optics/photonics, such as collaboration with established research groups, scientific publications and presentations at conferences.
- A personal interview with the admissions committee (if necessary).
Pre-enrolment

Pre-enrolment closed (consult the new pre-enrolment periods in the academic calendar).

How to pre-enrol

Enrolment

How to enrol

Legalisation of foreign documents

All documents issued in non-EU countries must be legalised and bear the corresponding apostille.

PROFESSIONAL OPPORTUNITIES

Professional opportunities

The particular fields that students may be employed in once they graduate are proliferating, given the interdisciplinary nature and increasing relevance of photonics, which has been selected as one of five Key Enabling Technologies for the future of the European Union. The master’s degree in Photonics complements bachelor’s degrees in the sciences (particularly physics) and engineering (particularly engineering physics, telecommunications engineering, electrical, mechanical and electronic engineering and optics, as well as related fields such as nanophotonics and bioengineering) and provides broader and more specific training on scientific advances and interdisciplinary technologies. Career prospects may include the following:

• Taking a doctoral degree in Photonics, Optics, Physics, Optical Engineering, Nanophotonics, Biophotonics, Telecommunications, Electronics, Imaging, Quantum Information, etc.
• Participating in doctoral programmes, R&D and innovation programmes in companies, basic or applied research centres and universities.
• Joining a large company as a consultant or engineer on photonics-related topics, applications development engineer, sales specialist or laboratory consultant.
• Working as a freelance advisor or consultant on photonics-related subjects.
• Working in highly specialised technical positions for controlling services such as microscopy, X-ray diffraction, thin films, etc.
• Participating in (and promoting) spin-offs and other small technology-based companies.
• Joining the education system for high-level training in the field of photonics.

Competencies

Generic competencies

Generic competencies are the skills that graduates acquire regardless of the specific course or field of study. The generic competencies established by the UPC are capacity for innovation and entrepreneurship, sustainability and social commitment, knowledge of a foreign language (preferably English), teamwork and proper use of information resources.

Specific competencies

• An understanding of the physical principles of optics and light-matter interaction, at classical and quantum levels.
• The ability to perform basic experiments in photonics and to analyse and understand advanced experiments and calculations in the fields chosen by the student.
• An understanding of laser physics and knowledge of the variety of laser types and main related applications.
• Knowledge of the fundamentals of image formation, light propagation through different media and Fourier optics.
• An understanding of the main concepts, underlying phenomena and most recent applications in the optional subjects chosen by students (quantum optics, biophotonics and imaging, nanophotonics, telecommunications, optical engineering, etc.).
• The ability to deal with an advanced research problem in photonics from start to finish, i.e., from conceptual planning and bibliographic research to the oral and written communication of the results, according to the
• The ability to understand optical engineering as an economic and business activity and to take into account social, ethical and sustainability aspects.
• An awareness of the importance of patents and the ability to understand and write a patent in the field of photonics.

ORGANISATION: ACADEMIC CALENDAR AND REGULATIONS

UPC school
Barcelona School of Telecommunications Engineering (ETSETB)

Participating institutions
Universitat Politècnica de Catalunya (UPC) - Coordinating university
 Institute of Photonic Sciences (ICFO)
Universitat Autònoma de Barcelona (UAB)
Universitat de Barcelona (UB)

Academic coordinator
Crina Cojocaru

Academic calendar
General academic calendar for bachelor’s, master’s and doctoral degrees courses

Academic regulations
Academic regulations for master’s degree courses at the UPC

CURRICULUM

Subjects	ECTS credits	Type
FIRST COURSE
Active and Spectral Imaging | 3 | Optional
Advanced Quantum Optics with Applications | 3 | Optional
Beam Propagation and Fourier Optics | 5 | Compulsory
Business and Patents in Photonics | 5 | Compulsory
Experimental Optical Techniques in Biology | 3 | Optional
Fibers and Telecommunications | 3 | Optional
From Cooling and Trapping of Neutral Atoms to Bose-Einstein Condensates | 3 | Optional
Image Processing in Biophotonics | 3 | Optional
Integrated Photonics | 3 | Optional
Introduction to Photonics. Optics and Lasers | 5 | Compulsory
Laser Applications in Remote Sensing: Lidar | 3 | Optional
Laser Systems and Applications | 3 | Optional
Machine Learning on Classical and Quantum Data | 3 | Optional
Managing Light with Devices | 3 | Optional
Measuring with Light | 3 | Optional
Nanophotonics | 3 | Optional
Non-Linear Optics | 3 | Optional
<table>
<thead>
<tr>
<th>Subjects</th>
<th>ECTS credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Design</td>
<td>3</td>
<td>Optional</td>
</tr>
<tr>
<td>Optics and Photonics Lab I</td>
<td>5</td>
<td>Optional</td>
</tr>
<tr>
<td>Optics and Photonics Lab II</td>
<td>5</td>
<td>Optional</td>
</tr>
<tr>
<td>Optoelectronics and Photovoltaic Technology</td>
<td>3</td>
<td>Optional</td>
</tr>
<tr>
<td>Photonic Systems in Telecommunications: Lidar (Laser Radar)</td>
<td>3</td>
<td>Optional</td>
</tr>
<tr>
<td>Photonics Laboratory</td>
<td>5</td>
<td>Compulsory</td>
</tr>
<tr>
<td>Photonics Materials and Metamaterials</td>
<td>3</td>
<td>Optional</td>
</tr>
<tr>
<td>Quantum Information Theory: Communication and Computation</td>
<td>3</td>
<td>Optional</td>
</tr>
<tr>
<td>Quantum Optics</td>
<td>3</td>
<td>Optional</td>
</tr>
<tr>
<td>Quantum Simulators with Ultracold Quantum Gases</td>
<td>3</td>
<td>Optional</td>
</tr>
<tr>
<td>Research Seminar</td>
<td>30</td>
<td>Optional</td>
</tr>
<tr>
<td>Ultrafast and Ultraintense Laser Light</td>
<td>3</td>
<td>Optional</td>
</tr>
<tr>
<td>Visual Optics and Biophotonics</td>
<td>3</td>
<td>Optional</td>
</tr>
<tr>
<td>SECOND COURSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master's Thesis</td>
<td>30</td>
<td>Optional</td>
</tr>
<tr>
<td>Master's Thesis</td>
<td>16</td>
<td>Project</td>
</tr>
</tbody>
</table>

December 2020. [UPC](https://upc.edu). Universitat Politècnica de Catalunya · BarcelonaTech